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LOGICAL L3 DAEMON

CLAIM OF BENEFIT TO PRIOR
APPLICATIONS

This application is a continuation application of U.S.
patent application Ser. No. 13/589,062, filed on Aug. 17,
2012, now published as U.S. Patent Publication 2013/
0044636. U.S. patent application Ser. No. 13/589,062 claims
the benefit of U.S. Provisional Patent Application 61/524,
754, filed Aug. 17, 2011; U.S. Provisional Patent Applica-
tion 61/643,339, filed May 6, 2012; U.S. Provisional Patent
Application 61/654,121, filed Jun. 1, 2012; and U.S. Provi-
sional Patent Application 61/666,876, filed Jul. 1, 2012. This
application claims the benefit of U.S. Provisional Patent
Application 61/643,339, filed May 6, 2012; U.S. Provisional
Patent Application 61/654,121, filed Jun. 1, 2012; and U.S.
Provisional Patent Application 61/666,876, filed Jul. 1,
2012. U.S. patent application Ser. No. 13/589,062 and U.S.
Provisional Patent Applications 61/524,754, 61/643,339,
61/654,121, and 61/666,876 are incorporated herein by
reference.

BACKGROUND

Many current enterprises have large and sophisticated
networks comprising switches, hubs, routers, servers, work-
stations and other networked devices, which support a
variety of connections, applications and systems. The
increased sophistication of computer networking, including
virtual machine migration, dynamic workloads, multi-ten-
ancy, and customer specific quality of service and security
configurations require a better paradigm for network control.
Networks have traditionally been managed through low-
level configuration of individual components. Network con-
figurations often depend on the underlying network: for
example, blocking a user’s access with an access control list
(“ACL”) entry requires knowing the user’s current IP
address. More complicated tasks require more extensive
network knowledge: forcing guest users’ port 80 traffic to
traverse an HTTP proxy requires knowing the current net-
work topology and the location of each guest. This process
is of increased difficulty where the network switching ele-
ments are shared across multiple users.

In response, there is a growing movement towards a new
network control paradigm called Software-Defined Net-
working (SDN). In the SDN paradigm, a network controller,
running on one or more servers in a network, controls,
maintains, and implements control logic that governs the
forwarding behavior of shared network switching elements
on a per user basis. Making network management decisions
often requires knowledge of the network state. To facilitate
management decision-making, the network controller cre-
ates and maintains a view of the network state and provides
an application programming interface upon which manage-
ment applications may access a view of the network state.

Some of the primary goals of maintaining large networks
(including both datacenters and enterprise networks) are
scalability, mobility, and multi-tenancy. Many approaches
taken to address one of these goals results in hampering at
least one of the others. For instance, one can easily provide
network mobility for virtual machines within an [.2 domain,
but L2 domains cannot scale to large sizes. Furthermore,
retaining user isolation greatly complicates mobility. As
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such, improved solutions that can satisfy the scalability,
mobility, and multi-tenancy goals are needed.

BRIEF SUMMARY

Some embodiments in some cases model logical routing
as an act of interconnecting two or more logical datapath
(LDP) sets operating in [.2 domains by a logical router that
implements a logical datapath set (LDPS) operating in an [.3
domain. A packet traversing from a logical [.2 domain to
another will take the following four steps in some embodi-
ments. These four steps are described below in terms of the
logical processing operations that the network control sys-
tem implements. However, it is to be understood that these
operations are performed by the managed switching ele-
ments of the network based on the physical control plane
data that is produced by the network control system.

First, the packet will be processed through an L2 table
pipeline of the originating logical L2 domain. The pipeline
will conclude with the destination media access control
(MAC) address being forwarded to a logical port attached to
a logical port of a logical router.

Second, the packet will be processed though a logical
router’s 3 datapath, again by sending it through this
router’s 1.3 table pipeline. The 1.2 lookup stage common in
physical routers is skipped in the router’s L3 datapath in
some embodiments, as the logical router will only receive
packets requiring routing.

In some embodiments, the [.3 forwarding decision will
use the prefix (forwarding information base (FIB) entries
that are provisioned by the logical control plane of the
logical router. In some embodiments, a control application is
used to receive the logical control plane data, and to convert
this data to logical forwarding plane data that is then
supplied to the network control system. For the 1.3 forward-
ing decision, some embodiments use the prefix FIB entries
to implement longest prefix matching.

As a result, the L3 router will forward the packet to the
logical port that is “connected” to the destination .2 LDPS.
Before forwarding the packet further to that LDPS, the [.3
router will change the originating MAC address to one that
is defined in its domain as well as resolve the destination IP
address to a destination MAC address. The resolution is
executed by the last “IP output” stage of the [.3 data pipeline
in some embodiments. The same pipeline will decrement
TTL and update the checksum (and respond with ICMP if
TTL goes to zero).

It should be noted that some embodiments rewrite the
MAC address before feeding the processed packet to the
next LDPS, because without this rewriting a different for-
warding decision could result at the next LDPS. It should
also be noted that even though traditional routers execute the
resolution of the destination IP address using Address Reso-
Iution Protocol (ARP), some embodiments do not employ
ARP for this purpose in the L3 logical router because as long
as the next-hop is a logical L2 datapath, this resolution
remains internal to the virtualization application.

Third, the packet will be processed through an [.2 table
pipeline of the destination logical .2 domain. The destina-
tion [.2 table pipeline determines the logical egress port
along which it should send the packet. In case of an
unknown MAC address, this pipeline would resolve the
MAC address location by relying on some distributed
lookup mechanism. In some embodiments, the managed
switching elements rely on a MAC learning algorithm, e.g.,
they flood the unknown packets. In these or other embodi-
ments, the MAC address location information can also be
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obtained by other mechanisms, for instance out-of-band. If
such a mechanism is available in some embodiments, the
last logical 1.2 table pipeline uses this mechanism to obtain
the MAC address location.

Fourth, the packet gets sent to the logical port attached to
the physical port representing the logical port attachment. At
this stage, if the port is point-to-point media (e.g., virtual
network interface, VIF), there’s nothing left to do but to send
the packet to the port. However, if the last LDPS was an L3
router and hence the attachment is a physical L3 subnet, the
attachment point, in some embodiments, resolves the desti-
nation IP address by using ARP before sending the packet
out. In that case, the source MAC address would be egress
specific and not the logical MAC interface address in case of
a VIF. In other embodiments, resolving the destination IP
address by using ARP is performed during the second step
by the L3 logical router.

In the example above, there’s only a single logical router
interconnecting logical .2 datapaths, but nothing limits the
topologies. One of ordinary skill in the art will recognize
that more LDP sets can be interconnected for richer topolo-
gies.

In some embodiments, the control application allows an
L3 specific logical state to be defined in terms of one or more
tables that specity a logical L3 pipeline. The corresponding
logical control plane managing the LDPS pipeline can either
rely on static route configuration, or peer with other LDP
sets over a standard routing protocol.

In some embodiments, the virtualization application
defines the physical realization of the above-described,
four-step 1.2/.3 packet processing into physical control
plane data, which when translated into physical forwarding
data by the managed switching elements, effectuates a
sequence of logical pipeline executions that are all or
predominantly performed at the first-hop, managed edge
switching element. In order to maintain the locality of the
physical traffic, the first-hop executes the series of pipelines
(with all state required) and directly sends the traffic towards
the ultimate egress location in the physical network. When
short cut tunnels are used, the virtualization application
interconnects logical L2 datapaths with logical L3 datapaths
by extending the short-cut tunnel mesh beyond a single
LDPS to a union of ports of all the interconnected LDP sets.
When everything is executed at the first-hop, the first-hop
elements typically have access to all the states of the logical
network through which the packet traverses.

The preceding Summary is intended to serve as a brief
introduction to some embodiments of the invention. It is not
meant to be an introduction or overview of all inventive
subject matter disclosed in this document. The Detailed
Description that follows and the Drawings that are referred
to in the Detailed Description will further describe the
embodiments described in the Summary as well as other
embodiments. Accordingly, to understand all the embodi-
ments described by this document, a full review of the
Summary, Detailed Description and the Drawings is needed.
Moreover, the claimed subject matters are not to be limited
by the illustrative details in the Summary, Detailed Descrip-
tion and the Drawing, but rather are to be defined by the
appended claims, because the claimed subject matters can be
embodied in other specific forms without departing from the
spirit of the subject matters.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the
appended claims. However, for purpose of explanation,
several embodiments of the invention are set forth in the
following figures.
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FIG. 1 conceptually illustrates a network architecture of
some embodiments.

FIG. 2 conceptually illustrates a processing pipeline of
some embodiments for processing network data through
logical switches and logical routers.

FIG. 3 conceptually illustrates a network architecture in
which a logical router is implemented in a single 1.3 router.

FIG. 4 conceptually illustrates a network architecture in
which a logical router is implemented in a managed switch-
ing element.

FIG. 5 conceptually illustrates a network architecture in
which a router is implemented in a distributed manner such
that each of several managed switching elements routes
packets at 3.

FIG. 6 conceptually illustrates an example implementa-
tion of the logical processing pipeline described above by
reference to FIG. 2.

FIG. 7 conceptually illustrates the logical processing
pipeline of some embodiments for processing a packet
through a logical switch, a logical router, and a logical
switch.

FIG. 8 conceptually illustrates an example network archi-
tecture of some embodiments which implements a logical
router and logical switches.

FIG. 9 conceptually illustrates an example network archi-
tecture of some embodiments which implements the logical
router and logical switches.

FIG. 10 conceptually illustrates an example network
architecture of some embodiments which implements the
logical router and logical switches.

FIG. 11 conceptually illustrates an example architecture
of a host of some embodiments that includes a managed
switching element and a 3.

FIG. 12 conceptually illustrates an example implementa-
tion of logical switches and logical routers in managed
switching elements and L3 routers.

FIGS. 13A-13C conceptually illustrate an example opera-
tion of logical switches, a logical router implemented in
managed switching elements and a L3 router described
above by reference to FIG. 12.

FIG. 14 conceptually illustrates a process that some
embodiments perform to forward a packet to determine to
which managed switching element to send a packet.

FIG. 15 conceptually illustrates the host as described
above by reference to FIG. 8.

FIG. 16 conceptually illustrates a process that some
embodiments use to directly forward a packet from a first .3
router to a second L3 router when the first and the second L3
routers are implemented in the same host.

FIG. 17 conceptually illustrates an example implementa-
tion of the logical processing pipeline described above by
reference to FIG. 2.

FIG. 18 conceptually illustrates a logical processing pipe-
line of some embodiments for processing a packet through
a logical switch, a logical router, and another logical switch.

FIG. 19 conceptually illustrates an example network
architecture of some embodiments which implements a
logical router and logical switches.

FIG. 20 conceptually illustrates an example network
architecture of some embodiments which implements a
logical router and logical switches.

FIG. 21 conceptually illustrates an example network
architecture of some embodiments which implements a
logical router and logical switches.
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FIG. 22 conceptually illustrates an example architecture
of a host of some embodiments that includes a managed
switching element that implements a logical router based on
flow entries.

FIG. 23 conceptually illustrates an example implementa-
tion of logical switches and logical routers in managed
switching elements.

FIG. 24 conceptually illustrates an example operation of
logical switches, a logical router, and managed switching
elements described above by reference to FIG. 23.

FIG. 25 conceptually illustrates an example implementa-
tion of a logical processing pipeline described above by
reference to FIG. 2.

FIG. 26 conceptually illustrates a logical processing pipe-
line of some embodiments for processing a packet through
a logical switch, a logical router, and another logical switch.

FIG. 27 conceptually illustrates an example network
architecture of some embodiments which implements a
logical router and logical switches.

FIG. 28 conceptually illustrates an example network
architecture of some embodiments which implements a
logical router and logical switches.

FIG. 29 conceptually illustrates an example of a first-hop
switching element that performs all of [.2 and .3 processing
on a received packet to forward and route.

FIGS. 30A-30B conceptually illustrate an example opera-
tion of logical switches, a logical router, and managed
switching elements described above by reference to FIG. 29.

FIG. 31 conceptually illustrates an example software
architecture of a host on which a managed switching ele-
ment runs.

FIG. 32 conceptually illustrates a process that some
embodiments perform to translate network addresses.

FIG. 33 conceptually illustrates that a first-hop switching
element of some embodiments performs the entire logical
processing pipeline including the NAT operation.

FIG. 34 conceptually illustrates an example that a man-
aged switching element does not perform a logical process-
ing pipeline when sending a returning packet to a managed
switching element.

FIG. 35 conceptually illustrates a process that some
embodiments perform to send a packet to a destination
machine whose address is NAT ed.

FIG. 36 illustrates an example of migrating NAT state
from a first host to a second host as a VM migrates from the
first host to the second host.

FIG. 37 illustrates another example of migrating NAT
state from a first host to a second host as a VM migrates from
the first host to the second host.

FIG. 38 illustrates an example physical implementation of
logical switches and a logical router that performs load
balancing.

FIG. 39 illustrates another example physical implemen-
tation of logical switches and a logical router that performs
load balancing.

FIG. 40 illustrates yet another example physical imple-
mentation of logical switches and a logical router that
performs load balancing.

FIG. 41 conceptually illustrates a load balancing daemon
that balances load among the machines that collectively
provides a service (e.g., web service).

FIG. 42 illustrates a DHCP daemon that provides DHCP
service to different logical networks for different users.

FIG. 43 illustrates a central DHCP daemon and several
local DHCP daemons.

FIG. 44 conceptually illustrates an example of performing
some logical processing at the last hop switching element.
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FIGS. 45A-45B conceptually illustrate an example opera-
tion of logical switches, a logical router, and managed
switching elements described above by reference to FIG. 44.

FIG. 46 conceptually illustrates an example of performing
some logical processing at the last hop switching element.

FIGS. 47A-47B conceptually illustrate an example opera-
tion of logical switches, a logical router, and managed
switching elements described above by reference to FIG. 46.

FIG. 48 conceptually illustrates an example software
architecture of a host on which a managed switching ele-
ment runs.

FIG. 49 conceptually illustrates a process that some
embodiments perform to resolve network addresses.

FIG. 50 illustrates a map server that allows several hosts
(or VM) that each run an L3 daemon to avoid broadcasting
ARP requests.

FIG. 51 illustrates a process that some embodiments
perform to maintain a mapping table that includes mappings
of IP and MAC addresses.

FIG. 52 illustrates a process that some embodiments
perform to maintain a mapping table that includes mappings
of IP and MAC addresses.

FIG. 53 conceptually illustrates a controller instance of
some embodiments generate flows by performing table
mapping operations on tables using a table mapping pro-
cessor (not shown) such as an n Log.

FIG. 54 illustrates an example architecture and a user
interface.

FIG. 55 illustrates tables before a stage described above
by reference to FIG. 54.

FIG. 56 illustrates tables after the user supplies a logical
port’s identifier, an IP address to associate with the port, and
a net mask to add the logical port to the logical router.

FIG. 57 illustrates a result of a set of table mapping
operations.

FIG. 58 illustrates a result of a set of table mapping
operations.

FIG. 59 illustrates tables after the stage described above
by reference to FIG. 54.

FIG. 60 illustrates a result of a set of table mapping
operations.

FIG. 61 illustrates a result of a set of table mapping
operations.

FIG. 62 illustrates new rows added to some of the tables
after stages described above by reference to FIG. 61.

FIG. 63 illustrates a architecture after a control applica-
tion generates logical data by performing a table mapping
operations as described above by reference to FIGS. 55-62.

FIG. 64 conceptually illustrates an electronic system with
which some embodiments of the invention are implemented.

DETAILED DESCRIPTION

Some embodiments of the invention provide a network
control system that allows logical datapath (LDP) sets (e.g.,
logical networks) to be implemented by switching elements
of a physical network. To implement LDP sets, the network
control system of some embodiments generates physical
control plane data from logical forwarding plane data. The
physical control plane data is then pushed to the managed
switching elements, where it is typically converted into
physical forwarding plane data that allows the managed
switching elements to perform their forwarding decisions.
Based on the physical forwarding data, the managed switch-
ing elements can process data packets in accordance with the
logical processing rules specified within the physical control
plane data.
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A single logical datapath set provides switching fabric to
interconnect a number of logical ports, which can be either
attached to physical or virtual endpoints. In some embodi-
ments, the creation and use of such LDP sets and logical
ports provides a logical service model that corresponds to a
virtual local area network (VLAN). This model, in some
embodiments, limits the operations of the network control
system to defining only logical [.2 switching capabilities.
However, other embodiments extend the operations of the
network control system to both the logical [.2 switching
capabilities and the logical L3 switching capabilities.

The network control system of some embodiments sup-
ports the following logical .3 switching capabilities.

Logical routing. Instead of performing just L.2 switching
for packets, the network control system of some
embodiments also defines the physical control plane
data to direct the managed switching elements to for-
ward packets based on Internet Protocol (IP) addresses
when crossing [.2 broadcast domains (IP subnets). Such
logical L3 routing resolves the scalability issues of .2
networks.

Gateway virtualization. Instead of interfacing with exter-
nal networks by using a purely L2 interface, the net-
work control system of some embodiments can use an
IP interface to interact with external networks. In some
embodiments, the network control system defines such
an IP interface by defining a single logical gateway
even when multiple physical egress and ingress points
to and from the external networks exist. Accordingly,
some embodiments interface with external IP networks
by using gateway virtualization.

Network Address Translation. An entire [.3 subnet may be
network address translated (NATed). In some embodi-
ments, the logical network uses private addresses and
exposes only NAT’ed IP addresses for external net-
works. Moreover, in some embodiments, the subnets of
the logical network interconnect over NATs or use
destination NAT’ing to implement fine-grained appli-
cation level routing decisions.

Stateful filtering. Similar to NAT ing, some embodiments
isolate subnets from the external network by using
stateful access control lists (ACLs). Also, some
embodiments place ACLs between the logical subnets.

Load-balancing. In some cases, the logical network is
used to provide services. For these and other cases, the
network control system provides virtual IP addresses
for the application clusters. In some embodiments, the
network control system specifies load-balancing opera-
tions that enable spreading incoming application traffic
over a set of logical IP addresses.

DHCP. While a virtual machine (VM) can be set up to
provide dynamic IP address allocation services within
the logical network, a service provider may prefer more
efficient realization of the dynamic host configuration
protocol (DHCP) service at the infrastructure level.
Accordingly, the network control system of some
embodiments provides an efficient realization of the
DHCP service at the infrastructure level.

The design for each of these 1.3 features will be described
below. Implementation-wise the features are largely
orthogonal, so one of ordinary skill will realize that these
features do not all have to be offered by a network control
system of some embodiments. Before describing the fea-
tures further, several assumptions should be mentioned.
These assumptions are as follows.

Large networks. Logical [.3 networks spanning multiple

L2 networks will be larger than the logical L2 net-
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works. Some embodiments solve logical L3 problems
for server clusters as large as 10K servers by using a
map-reduce distributed processing technique.

Physical traffic non-locality. Logical subnets within a data
center may exchange significant traffic within the data
center. Some embodiments preserve the traffic locality
to the extent that this is possible. In the above-men-
tioned map-reduce example, the traffic has no locality
in terms of endpoints.

Logical traffic locality. There is indeed locality when it
comes to the traffic exchanged between the logical
subnets. In other words, not every logical network has
clients for the map-reduce cluster mentioned above.

Placement of the functionalities. As mentioned in U.S.
patent application Ser. No. 13/177,535, now issued as
U.S. Pat. No. 8,750,164, which is incorporated herein
by reference, the managed switching elements, in some
embodiments, are (1) edge switching elements of a
physical network (i.e., switching elements that have
direct connections with the virtual or physical comput-
ing devices connected by the physical network), and (2)
non-edge switching elements that are inserted in the
managed-switching element hierarchy to simplify and/
or facilitate the operation of the controlled edge switch-
ing elements. As further described in U.S. patent appli-
cation Ser. No. 13/177,535, the edge switching
elements include, in some embodiments, (1) switching
elements that have direct connections with the virtual
or physical computing devices connected by the net-
work, and (2) integration elements (called extenders)
that connect a first managed portion of the network to
a second managed portion of the network (e.g., a
portion in a different physical location than the first
managed portion), or to an unmanaged portion of the
network (e.g., to the internal network of an enterprise).
Some embodiments perform the logical 1.3 routing
ideally at the first managed edge switching element,
i.e., at the first-hop edge switching element, which may
be implemented in the hypervisor that also hosts the
virtual machines interconnected by the physical net-
work. Ideally, the first-hop switching element performs
all or most of the L3 routing because the network
control system of some embodiments can then consider
the non-edge switching elements (internal network) as
nothing but a fabric for interconnecting the devices.

Some of the embodiments described below are imple-

mented in a novel distributed network control system that is
formed by one or more controllers (also called controller
instances below) for managing one or more shared forward-
ing elements. The shared forwarding elements in some
embodiments can include virtual or physical network
switches, software switches (e.g., Open vSwitch), routers,
and/or other switching devices, as well as any other network
elements (such as load balancers, etc.) that establish con-
nections between these switches, routers, and/or other
switching devices. Such forwarding elements (e.g., physical
switches or routers) are also referred to below as switching
elements. In contrast to an off the shelf switch, a software
forwarding element is a switch that in some embodiments is
formed by storing its switching table(s) and logic in the
memory of a standalone device (e.g., a standalone com-
puter), while in other embodiments, it is a switch that is
formed by storing its switching table(s) and logic in the
memory of a device (e.g., a computer) that also executes a
hypervisor and one or more virtual machines on top of that
hypervisor.
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In some embodiments, the controller instances allow the
system to accept logical datapath sets from users and to
configure the switching elements to implement these logical
datapath sets. In some embodiments, one type of controller
instance is a device (e.g., a general-purpose computer) that
executes one or more modules that transform the user input
from a logical control plane to a logical forwarding plane,
and then transform the logical forwarding plane data to
physical control plane data. These modules in some embodi-
ments include a control module and a virtualization module.
A control module allows a user to specify and populate
logical datapath set, while a virtualization module imple-
ments the specified logical datapath set by mapping the
logical datapath set onto the physical switching infrastruc-
ture. In some embodiments, the control and virtualization
applications are two separate applications, while in other
embodiments they are part of the same application.

From the logical forwarding plane data for a particular
logical datapath set, the virtualization module of some
embodiments generates universal physical control plane
(UPCP) data that is generic for any managed switching
element that implements the logical datapath set. In some
embodiments, this virtualization module is part of a con-
troller instance that is a master controller for the particular
logical datapath set. This controller is referred to as the
logical controller.

In some embodiments, the UPCP data is then converted to
customized physical control plane (CPCP) data for each
particular managed switching element by a controller
instance that is a master physical controller instance for the
particular managed switching element, or by a chassis
controller for the particular managed switching element, as
further described in U.S. patent application Ser. No. 13/589,
077, filed Aug. 17, 2012, now issued as U.S. Pat. No.
8,743,889, which is incorporated herein by reference. When
the chassis controller generates the CPCP data, the chassis
controller obtains the UPCP data from the virtualization
module of the logical controller through the physical con-
troller.

Irrespective of whether the physical controller or chassis
controller generate the CPCP data, the CPCP data for a
particular managed switching element needs to be propa-
gated to the managed switching element. In some embodi-
ments, the CPCP data is propagated through a network
information base (NIB) data structure, which in some
embodiments is an object-oriented data structure. Several
examples of using the NIB data structure are described in
U.S. patent application Ser. No. 13/177,529, now issued as
U.S. Pat. No. 8,743,889 and Ser. No. 13/177,533, now
issued as U.S. Pat. No. 8,817,620, which are incorporated
herein by reference. As described in these applications, the
NIB data structure is also used in some embodiments to may
serve as a communication medium between different con-
troller instances, and to store data regarding the logical
datapath sets (e.g., logical switching elements) and/or the
managed switching elements that implement these logical
datapath sets.

However, other embodiments do not use the NIB data
structure to propagate CPCP data from the physical control-
lers or chassis controllers to the managed switching ele-
ments, to communicate between controller instances, and to
store data regarding the logical datapath sets and/or man-
aged switching elements. For instance, in some embodi-
ments, the physical controllers and/or chassis controllers
communicate with the managed switching elements through
OpenFlow entries and updates over the configuration pro-
tocol. Also, in some embodiments, the controller instances
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use one or more direct communication channels (e.g., RPC
calls) to exchange data. In addition, in some embodiments,
the controller instances (e.g., the control and virtualization
modules of these instances) express the logical and/or physi-
cal data in terms of records that are written into the relational
database data structure. In some embodiments, this rela-
tional database data structure are part of the input and output
tables of a table mapping engine (called nlLog) that is used
to implement one or more modules of the controller
instances.

1. Logical Routing

Some embodiments in some cases model logical routing
as an act of interconnecting two or more LDP sets operating
in .2 domains by a logical router that implements a LDPS
operating in an [L3 domain. A packet traversing from a
logical 1.2 domain to another will take the following four
steps in some embodiments. These four steps are described
below in terms of the logical processing operations that the
network control system implements. However, it is to be
understood that these operations are performed by the man-
aged switching elements of the network based on the physi-
cal control plane data that is produced by the network
control system.

First, the packet will be processed through an L2 table
pipeline of the originating logical L2 domain. The pipeline
will conclude with the destination media access control
(MAC) address being forwarded to a logical port attached to
a logical port of a logical router.

Second, the packet will be processed though a logical
router’s 3 datapath, again by sending it through this
router’s 1.3 table pipeline. The 1.2 lookup stage common in
physical routers is skipped in the router’s L3 datapath in
some embodiments, as the logical router will only receive
packets requiring routing.

In some embodiments, the [.3 forwarding decision will
use the prefix (forwarding information base (FIB) entries
that are provisioned by the logical control plane of the
logical router. In some embodiments, a control application is
used to receive the logical control plane data, and to convert
this data to logical forwarding plane data that is then
supplied to the network control system. For the 1.3 forward-
ing decision, some embodiments use the prefix FIB entries
to implement longest prefix matching.

As a result, the L3 router will forward the packet to the
logical port that is “connected” to the destination .2 LDPS.
Before forwarding the packet further to that LDPS, the [.3
router will change the originating MAC address to one that
is defined in its domain as well as resolve the destination IP
address to a destination MAC address. The resolution is
executed by the last “IP output” stage of the [.3 data pipeline
in some embodiments. The same pipeline will decrement
TTL and update the checksum (and respond with ICMP if
TTL goes to zero).

It should be noted that some embodiments rewrite the
MAC address before feeding the processed packet to the
next LDPS, because without this rewriting a different for-
warding decision could result at the next LDPS. It should
also be noted that even though traditional routers execute the
resolution of the destination IP address using ARP, some
embodiments do not employ ARP for this purpose in the L3
logical router because as long as the next-hop is a logical [.2
datapath, this resolution remains internal to the virtualiza-
tion application.

Third, the packet will be processed through an [.2 table
pipeline of the destination logical .2 domain. The destina-
tion [.2 table pipeline determines the logical egress port
along which it should send the packet. In case of an
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unknown MAC address, this pipeline would resolve the
MAC address location by relying on some distributed
lookup mechanism. In some embodiments, the managed
switching elements rely on a MAC learning algorithm, e.g.,
they flood the unknown packets. In these or other embodi-
ments, the MAC address location information can also be
obtained by other mechanisms, for instance out-of-band. If
such a mechanism is available in some embodiments, the
last logical 1.2 table pipeline uses this mechanism to obtain
the MAC address location.

Fourth, the packet gets sent to the logical port attached to
the physical port representing the logical port attachment. At
this stage, if the port is point-to-point media (e.g., virtual
network interface, VIF), there’s nothing left to do but to send
the packet to the port. However, if the last LDPS was an L3
router and hence the attachment is a physical L3 subnet, the
attachment point, in some embodiments, resolves the desti-
nation IP address by using ARP before sending the packet
out. In that case, the source MAC address would be egress
specific and not the logical MAC interface address in case of
a VIF. In other embodiments, resolving the destination IP
address by using ARP is performed during the second step
by the L3 logical router.

In the example above, there’s only a single logical router
interconnecting logical .2 datapaths, but nothing limits the
topologies. One of ordinary skill in the art will recognize
that more LDP sets can be interconnected for richer topolo-
gies.

In some embodiments, the control application allows an
L3 specific logical state to be defined in terms of one or more
tables that specity a logical L3 pipeline. The corresponding
logical control plane managing the LDPS pipeline can either
rely on static route configuration, or peer with other LDP
sets over a standard routing protocol.

In some embodiments, the virtualization application
defines the physical realization of the above-described,
four-step 1.2/.3 packet processing into physical control
plane data, which when translated into physical forwarding
data by the managed switching elements, effectuates a
sequence of logical pipeline executions that are all or
predominantly performed at the first-hop, managed edge
switching element. In order to maintain the locality of the
physical traffic, the first-hop executes the series of pipelines
(with all state required) and directly sends the traffic towards
the ultimate egress location in the physical network. When
short cut tunnels are used, the virtualization application
interconnects logical L2 datapaths with logical L3 datapaths
by extending the short-cut tunnel mesh beyond a single
LDPS to a union of ports of all the interconnected LDP sets.

When everything is executed at the first-hop, the first-hop
elements typically have access to all the states of the logical
network through which the packet traverses. The dissemi-
nation (and its scaling implications) of the state for the
execution of the logical pipelines at the first-hop switching
element is described further below.

FIG. 1 conceptually illustrates a network architecture 100
of some embodiments. Specifically, this figure illustrates
that a logical router 105 routes packets between two LDP
sets (e.g., logical networks) 150 and 155. As shown, the
network architecture 100 includes the logical router 105,
logical switches 110 and 115, and machines 120-145.

The logical switch 110 is a logical switch (or a logical
switching element) described in U.S. patent application Ser.
No. 13/177,535. The logical switch 110 is implemented
across several managed switching elements (not shown).
The logical switch 110 routes network traffic between the
machines 120-130 at [.2 (layer 2). That is, the logical switch
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110 makes switching decisions to route network data at the
data link layer between the machines 120-130 based on one
or more forwarding tables (not shown) that the logical
switch 110 has. The logical switch 110, along with several
other logical switches (not shown), routes the network traffic
for the logical network 150. The logical switch 115 is
another logical switch. The logical switch 115 routes the
traffic between machines 135-145 for the logical network
155.

A logical router in some embodiments routes traffic at L3
(layer 3—network layer) between different logical networks.
Specifically, the logical router routes network traffic between
two or more logical switches based on a set of routing tables.
In some embodiments, a logical router is implemented in a
single managed switching element while in other embodi-
ments a logical router is implemented in several different
managed switching elements in a distributed manner. A
logical router of these different embodiments will be
described in detail further below. The logical router 105
routes the network traffic at the L3 between the logical
networks 150 and 155. Specifically, the logical router 105
routes the network traffic between the two logical switches
110 and 115.

The machines 120-145 are machines that are capable of
exchanging data packets. For instance, each machine 120-
145 has a network interface controller (NIC) so that appli-
cations that execute on the machine 120-145 can exchange
data between them through the logical switches 110 and 115
and the logical router 105.

The logical networks 150 and 155 are different in that the
machines in each network use different L3 addresses. For
instance, the logical networks 150 and 155 are different IP
subnets for two different departments of a company.

In operation, the logical switches 110 and 115 and the
logical router 105 function like switches and routers. For
instance, the logical switch 110 routes data packets origi-
nating from one of the machines 120-130 and heading to
another of the machines 120-130. When the logical switch
110 in the logical network 150 receives a data packet that is
destined for one of the machines 135-145 in the logical
network 155, the logical switch 110 sends the packet to the
logical router 105. The logical router 105 then routes the
packet, based on the information included in the header of
the packet, to the logical switch 115. The logical switch 115
then routes the packet to one of the machines 135-145. Data
packets originating from one of the machines 135-145 are
routed by the logical switches 110 and 115 and the logical
router 105 in a similar manner.

FIG. 1 illustrates a single logical router that routes data
between the two logical networks 150 and 155. One of
ordinary skill in the art will recognize that there could be
more than one logical routers involved in routing packets
between two logical networks.

FIG. 2 conceptually illustrates a processing pipeline 200
of some embodiments for processing network data through
logical switches and logical routers. Specifically, the pro-
cessing pipeline 200 includes three stages 205-215 for
processing a data packet through a logical switch 220, a
logical router 225, and then a logical switch 230, respec-
tively. This figure illustrates the logical router 225 and the
logical switches 220 and 230 in the top half of the figure and
the processing pipeline 200 in the bottom half of the figure.

The logical router 225 is similar to the logical router 105
described above by reference to FIG. 1, in that the logical
router 225 routes data packets between the logical switches
220 and 220. The logical switches 220 and 230 are similar
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to the logical switches 110 and 115. The logical switches 220
and 230 each forward the traffic at .2 for a logical network.

When the logical switch 220 receives a packet, the logical
switch 220 performs stage 205 (L2 processing) of the logical
processing pipeline 200 in order to forward the packet in one
logical network. When the packet is destined for another
logical network, the logical switch 220 forwards the packet
to the logical router 225. The logical router 225 then
performs stage 210 (L3 processing) of the logical processing
pipeline 200 on the packet in order to route the data at L3.
The logical router 225 sends this packet to another logical
router (not shown) or, if the logical router 225 is coupled to
the logical switch 230, the logical router 225 sends the
packet to the logical switch 230 that would send the packet
directly to the destination machine of the packet. The logical
switch 230, which directly sends the packet to the packet’s
destination, performs stage 215 (L2 processing) of the
logical processing pipeline 200 in order to forward the
packet to the packet’s destination.

In some embodiments, logical switches and logical rout-
ers are implemented by a set of managed switching elements
(not shown). These managed switching elements of some
embodiments implement the logical switches and logical
routers by performing a logical processing pipeline such as
the logical processing pipeline 200. The managed switching
elements of some embodiments perform the logical process-
ing pipelines based on flow entries in the managed switching
elements. The flow entries (not shown) in the managed
switching elements are configured by the network control
system of some embodiments. More details of the logical
processing pipeline 200 will be described further below.

The next three figures, FIGS. 3, 4, and 5 conceptually
illustrates several implementations of logical switches and
logical routers of some embodiments. FIGS. 3 and 4 illus-
trates two different implementations of centralized .3 rout-
ing while FIG. 5 illustrates a distributed L3 routing.

FIG. 3 conceptually illustrates a network architecture 300.
Specifically, FIG. 3 illustrates that the logical router 225 is
implemented in a single L3 router 360 (e.g., a hardware
router or a software router). The L3 router 360 routes the
packets for different logical networks each of which includes
several logical switches implemented in several different
managed switching elements. This figure is horizontally
divided into a left half and a right half that represent logical
and physical implementations, respectively. This figure is
also vertically divided into a bottom half and a top half that
represent layer 2 and layer 3, respectively. FIG. 3 illustrates
the network architecture 300 includes the L3 router 360 and
managed switching elements 305, 310, 315, and 320. This
figure also illustrates that each of the logical switches 220
and 230 is logically coupled to three VMs.

The L3 router 360 implements the logical router 225. The
L3 router 360 routes packets between different logical
networks that include logical switches 220 and 230. The L3
router 360 routes the packets according to L3 entries 335
that specity the manner in which the packets should be
routed at L3. For instance, the L3 entries of some embodi-
ments are entries (e.g., routes) in routing tables that specify
that a packet that has a destination IP address that falls in a
particular range of IP addresses should be sent out through
a particular logical port of the logical router 225. In some
embodiments, the logical ports of the logical router 225 are
mapped to the ports of the L3 router and the logical router
225 generates the L3 entries based on the mappings. Map-
ping ports of a logical router to an [.3 router that implements
the logical router will be described further below.
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The managed switching elements 305-320 of some
embodiments implement logical switches in a distributed
manner. That is, a logical switch in these embodiments may
be implemented across one or more of the managed switch-
ing elements 305-320. For instance, the logical switch 220
may be implemented across the managed switching ele-
ments 305, 310, and 315 and the logical switch 230 may be
implemented across the managed switching elements 305,
315 and 320. The six VMs 362-374 logically coupled to the
logical switches 220 and 230 are coupled to the managed
switching elements 310-320 as shown.

The managed switching elements 305-320 of some
embodiments each forwards the packets according to [.2
flow entries that specify the manner in which the packets
should be forwarded at 2. For instance, the L2 flow entries
may specify that a packet that has a particular destination
MAC address should be sent out through a particular logical
port of the logical switch. Each of the managed switching
elements 305-320 has a set of [.2 flow entries 340 (Flow
entries 340 for switching elements 305-315 are not depicted
for simplicity). The L2 flow entries for each managed
switching elements are configured in the managed switching
element by the controller cluster. Configuring managed
switching elements by configuring [.2 flows entries for the
managed switching elements will be described in detail
further below.

The managed switching element 305 of some embodi-
ments is a second-level managed switching element. A
second-level managed switching element is a managed
non-edge switching element, which, in contrast to a man-
aged edge switching element, does not send and receive
packets directly to and from the machines. A second-level
managed switching element facilitates packet exchanges
between non-edge managed switching elements and edge
managed switching elements. A pool node and an extender,
which are described in U.S. patent application Ser. No.
13/177,535, are also second-level managed switching ele-
ments. The managed switching element 305 of some
embodiments functions as an extender. That is, the managed
switching element 305 communicatively bridges remote
managed networks (not shown) that are separated by one or
more other networks (not shown).

The managed switching element 305 of some embodi-
ments is communicatively coupled to the L3 router 360.
When there are packets that need to be routed at 1.3, the
managed switching elements 310-320 send the packets to
the managed switching element 305 so that the L3 router 360
routes the packets at L.3. More details about a centralized
logical router that is implemented in an L3 router will be
described further below by reference to FIGS. 6-16.

FIG. 4 conceptually illustrates a network architecture 400.
Specifically, FIG. 4 illustrates that the logical router 225 is
implemented in a managed switching element 410. In con-
trast to the network architecture 300 in which the L3 router
360 routes the packets at L3, the managed switching element
410 routes packets at L3 in the network architecture 400.
This figure is horizontally divided into a left half and a right
half that represent logical and physical implementations,
respectively. This figure is also vertically divided into a
bottom half and a top half that represent layer 2 and layer 3,
respectively.

The network architecture 400 is similar to the network
architecture 300 except that the network architecture 400
does not include the L3 router 360. The managed switching
element 410 implements the logical router 225. That is, the
managed switching element 410 routes packets between
different logical networks that include logical switches 220
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and 230. The managed switching element 410 of some
embodiments routes the packets according to L3 entries 405
that specity the manner in which the packets should be
routed at L3. However, in contrast to the L3 entries 335 of
some embodiments, the L3 entries 405 are not entries for
routing tables. Rather, the L3 entries 405 are flow entries. As
described in U.S. patent application Ser. No. 13/177,535, a
flow entry includes a qualifier and an action while the entries
in routing tables are just lookup tables for finding the next
hops for the packets. Also, the L3 flow entries may specify
the manner in which to generate entries in the routing tables
(not shown).

In addition to implementing a centralized logical router,
the managed switching element 410 of some embodiments
implements one or more logical switches that are imple-
mented across several managed switching elements. The
managed switching element 410 therefore has its own set of
L2 flow entries 340 (not depicted). In the architecture 400,
the managed switching elements 410 and 310-320 together
implement the logical switches 220 and 230 in a distributed
manner.

The managed switching element 410 of some embodi-
ments thus implements both a centralized logical router and
logical switches. In other embodiments, implementation of
a centralized logical router and logical switches may be
separated into two or more managed switching elements.
For instance, one managed switching element (not shown)
may implement a centralized logical router using flow
entries and another managed switching element (not shown)
may implement logical switches based on flow entries in a
distributed manner. More details about a centralized logical
router that is implemented in a managed switching element
based on flow entries will be described further below by
reference to FIGS. 17-24.

FIG. 5 conceptually illustrates a network architecture 500.
Specifically, FIG. 5 illustrates that the logical router 225 is
implemented in a distributed manner such that each of
several managed switching elements routes packets at [.3.
FIG. 5 illustrates that the network architecture 500 includes
four managed switching elements 505-520.

The managed switching elements 505-520 implement a
logical router and several logical switches for several dif-
ferent logical networks. Each of the managed switching
elements 505-520 of some embodiments is an edge switch-
ing element. That is, the managed switching element has one
or more machines that are coupled to the managed switching
element. The machines that are coupled to the managed
switching elements are also logically coupled to the logical
switches. The machines that are coupled to a managed
switching element may or may not be logically coupled to
the same logical switch.

Each of the managed switching elements 505-520 imple-
ments at least one logical router and at least one logical
switch that will route and forward packets to and from the
machines coupled to the managed switching element. In
other words, when the managed switching element receives
a packet from the machines coupled to the managed switch-
ing element, the managed switching element makes both
logical forwarding decisions and logical routing decisions.
Each of the managed switching elements 505-520 makes the
logical forwarding and routing decisions according to the [.2
entries and L3 entries in the logical flow entries 550. The
logical flow entries 550 include a set of .2 flow entries 530
and a set of L3 flow entries 535. More details about a
distributed logical router will be described further below by
reference to FIGS. 25-30B.
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FIGS. 6-16 illustrate a centralized logical router imple-
mented in a router. FIG. 6 conceptually illustrates an
example implementation of the logical processing pipeline
200 described above by reference to FIG. 2. FIG. 6 illus-
trates a network architecture 600. In the network architecture
600, the logical processing pipeline 200 is performed by
three managed switching elements 615, 620, and 625 and an
L3 router 635. In particular, the L2 processing 205 and the
L2 processing 215 are performed in a distributed manner
across managed switching elements 615, 620, and 625. The
L3 processing 210 is performed by the L3 router 635. FIG.
6 also illustrates source machine 610 and destination
machine 630.

The managed switching element 615 is an edge switching
element that directly receives the packets from a machine
coupled to the edge switching element. The managed
switching element 615 receives packets from the source
machine 610. When the managed switching element 615
receives a packet from the source machine 610, the managed
switching element 615 performs a portion of the 1.2 pro-
cessing 205 on the packet in order to logically forward the
packet.

There may be one or more managed switching elements
(not shown) between the managed switching element 615
and the managed switching element 620. These managed
switching elements have network constructs (e.g., PIFs,
VIFs, etc.) to which the logical constructs (e.g., logical
ports) of the logical switch 220 (not shown in FIG. 6) are
mapped.

When the packet is headed to the destination machine
630, which is in another logical network, the packet is
forwarded to the managed switching element 620. The
managed switching element 620 then performs the rest of
the 1.2 processing 205 and sends the packet to an L3 router
635, which implements a centralized logical router (not
shown).

Similar to L3 router 360 described above by reference to
FIG. 3, the L3 router 635 is a hardware router or a software
router of which the ports are mapped to the ports of a logical
router. The L3 router 635 performs the [.3 processing 210 on
the packet in order to logically route the packet. That is, the
L3 router 635 sends the packet to another logical router (not
shown) or to the managed switching element 620.

The managed switching element 620 is a second-level
managed switching element that functions as an extender in
some embodiments. The managed switching element 620
receives a packet from the [.3 router 635 and starts perform-
ing the L.2 processing 215 of the logical processing pipeline
200. There may be one of more managed switching elements
(not shown) between the managed switching element 620
and the managed switching element 625. These managed
switching elements have network constructs to which the
logical constructs of the logical switch 230 (not shown in
FIG. 6) are mapped.

The managed switching element 625 in the example
receives the packet from the managed switching element
620. The managed switching element 625 performs the rest
of the L2 processing 215 on the packet in order to logically
forward the packet. In this example, the managed switching
element 625 is also the switching element that directly sends
the packet to the destination machine 630. However, there
may be one or more managed switching elements (not
shown) between the managed switching element 625 and the
destination machine 630. These managed switching ele-
ments have network constructs to which the logical con-
structs of the logical switch 230 (not shown in FIG. 6) are
mapped.
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Although the 1.2 processing 205 and the 1.2 processing
215 are performed in a distributed manner in this example,
the L2 processing 205 and the L2 processing 215 do not
have to be performed in a distributed manner. For instance,
the managed switching element 615 may perform the entire
L2 processing 205 and the managed switching element 625
may perform the entire L2 processing 215. In such case, the
managed switching element 620 would just relay the packets
between the L3 router and the managed switching elements
615 and 625.

FIG. 7 conceptually illustrates the logical processing
pipeline 200 of some embodiments for processing a packet
through the logical switch 220, the logical router 225, and
the logical switch 230. Specifically, this figure illustrates the
logical processing pipeline 200 when performed in the
network architecture 600 described above by reference to
FIG. 6. As described above, in the network architecture 600,
the L2 processing 205, the L3 processing 210, and the 1.2
processing 215 are performed by the managed switching
elements 615, 620, and 625 and the L3 router 635.

The L2 processing 205, in some embodiments, includes
eight stages 705-740 for processing a packet through the
logical switch 220 (not shown in FIG. 7) in a logical network
(not shown) that is implemented across the managed switch-
ing elements 615 and 620. In some embodiments, the
managed switching element 615 that receives the packet
performs a portion of the [.2 processing 205 when the
managed switching element 615 receives the packet. The
managed switching element 620 then performs the rest of
the [.2 processing 205.

In some embodiments, a packet includes a header and a
payload. The header includes, in some embodiments, a set of
fields that contains information used for routing the packet
through a network. Logical switches and logical routers may
determine switching/routing decisions based on the infor-
mation contained in the header fields and may, in some
cases, modify some or all of the header fields.

In the stage 705 of the L2 processing 205, ingress context
mapping is performed on the packet to determine the logical
context of the packet. In some embodiments, the stage 705
is performed when the logical switch 220 receives the packet
(e.g., the packet is initially received by the managed switch-
ing element 615). A logical context, in some embodiments,
represents the state of the packet with respect to the logical
switch. The logical context may, for example, specify the
logical switch to which the packet belongs, the logical port
of' the logical switch through which the packet was received,
the logical port of the logical switch through which the
packet is to be transmitted, the stage of the logical forward-
ing plane of the logical switch the packet is at, etc.

Some embodiments determine the logical context of a
packet based on the source MAC address of the packet (i.e.,
the machine from which the packet was sent). Some embodi-
ments perform the logical context lookup based on the
source MAC address of the packet and the inport (i.e.,
ingress port) of the packet (i.e., the port of the managed
switching element 615 through which the packet was
received). Other embodiments may use other fields in the
packet’s header (e.g., MPLS header, VLAN id, etc.) for
determining the logical context of the packet.

After the first stage 705 is performed, some embodiments
store the information that represents the logical context in
one or more fields of the packet’s header. These fields may
also be referred to as a logical context tag or a logical context
ID. Furthermore, the logical context tag may coincide with
one or more known header fields (e.g., the VLAN id field)
in some embodiments. As such, these embodiments do not
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utilize the known header field or its accompanying features
in the manner that the header field is defined to be used.
Alternatively, some embodiments store the information that
represents the logical context as metadata that is associated
with (instead of stored in the packet itself) and passed along
with the packet.

In some embodiments, the second stage 710 is defined for
the logical switch 220. In some such embodiments, the stage
710 operates on the packet’s logical context to determine
ingress access control of the packet with respect to the
logical switch. For example, an ingress ACL is applied to the
packet to control the packet’s access to the logical switch
when the logical switch receives the packet. Based on the
ingress ACL defined for the logical switch, the packet may
be further processed (e.g., by the stage 715) or the packet
may be dropped, for example.

In the third stage 715 of the L2 processing 205, an [.2
forwarding is performed on the packet in the context of the
logical switch. In some embodiments, the third stage 715
operates on the packet’s logical context to process and
forward the packet with respect to the logical switch 220.
For instance, some embodiments define a 1.2 forwarding
table or L2 forwarding entries for processing the packet at
layer 2.

Moreover, when the packet’s destination is in another
logical network (i.e., when the packet’s destination logical
network is different than the logical network whose traffic is
processed by the logical switch 220), the logical switch 220
sends the packet to the logical router 225, which will then
perform the 1.3 processing 210 in order to route the packet
to the destination logical network. Thus, at the third stage
715, the managed switching element 615 of some embodi-
ments determines that the packet should be forwarded to the
logical router 225 through a logical port (not shown) of the
logical switch that is associated with the logical router 225.
In other embodiments, the managed switching element 615
does not necessarily determine whether the packet should be
forwarded to the logical router 225. Rather, the packet would
have an address of a port of the logical router 225 as a
destination address and the managed switching element 615
forwards this packet through the logical port of the logical
switch according to the destination address.

At the fourth stage 720, egress context mapping is per-
formed to identify a physical result that corresponds to the
result of the logical forwarding of the packet. For example,
the logical processing of the packet may specify that the
packet is to be sent out of one or more logical ports (e.g., a
logical egress port) of the logical switch 220. As such, the
egress context mapping operation identifies a physical
port(s) of one or more of the managed switching elements
(including the managed switching elements 615 and 620)
that corresponds to the particular logical port of the logical
switch 220. The managed switching element 615 determines
that the physical port (e.g. a VIF) to which the logical port
determined at the previous stage 715 is mapped is a port (not
shown) of the managed switching element 620.

The fifth stage 725 of the L2 processing 205 performs a
physical mapping based on the egress context mapping
performed at the fourth stage 720. In some embodiments, the
physical mapping determines operations for sending the
packet towards the physical port that was determined in the
fourth stage 720. For example, the physical mapping of
some embodiments determines one or more queues (not
shown) associated with one or more ports of the set of ports
(not shown) of the managed switching element 615 that is
performing the 1.2 processing 205 through which to send the
packet in order for the packet to reach the physical port(s)
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determined in the fifth stage 725. This way, the managed
switching elements can forward the packet along the correct
path in the network for the packet to reach the determined
physical port(s).

As shown, the sixth stage 730 of the 1.2 processing 205 is
performed by the managed switching element 620. The sixth
stage 730 is similar to the first stage 705. The stage 730 is
performed when the managed switching element 620
receives the packet. At the stage 730, the managed switching
element 620 looks up the logical context of the packet and
determines that L2 egress access control is left to be per-
formed.

The seventh stage 735 of some embodiments is defined
for the logical switch 220. The seventh stage 735 of some
such embodiments operates on the packet’s logical context
to determine egress access control of the packet with respect
to the logical switch. For instance, an egress ACL may be
applied to the packet to control the packet’s access out of the
logical switch 220 after logical forwarding has been per-
formed on the packet. Based on the egress ACL defined for
the logical switch, the packet may be further processed (e.g.,
sent out of a logical port of the logical switch or sent to a
dispatch port for further processing) or the packet may be
dropped, for example.

The eighth stage 740 is similar to the fifth stage 725. At
the eighth stage 740, the managed switching element 620
determines a specific physical port (not shown) of the
managed switching element 620 to which the logical egress
port of the logical switch 220 is mapped.

The L3 processing 210 includes six stages 745-761 for
processing a packet through the logical switch 220 (not
shown in FIG. 7) that is implemented by the L3 router 635.
As mentioned above, L3 processing involves performing a
set of logical routing lookups for determining where to route
the packet through a layer 3 network.

The first stage 745 performs a logical ingress ACL lookup
for determining access control when the logical router 225
receives the packet (i.e., when the L3 router 635 which
implements the logical router 225 receives the packet). The
next stage 746 performs network address translation (NAT)
on the packet. In particular, the stage 746 performs desti-
nation NAT (DNAT) to revert the destination address of the
packet back to the real address of the destination machine
that is hidden from the source machine of the packet. This
stage 746 is performed when DNAT is enabled.

The next stage 750 performs a logical L3 routing for
determining one or more logical ports to send the packet
through the layer 3 network based on the L3 addresses (e.g.,
destination IP address) of the packet and routing tables (e.g.,
containing .3 entries). Since the logical router 225 is
implemented by the 1.3 router 635, the routing tables are
configured in the L3 router 635.

At the fourth stage 755, the L3 router 635 of some
embodiments also performs source NAT (SNAT) on the
packet. For instance, the L3 router 635 replaces the source
1P address of the packet with a different IP address in order
to hide the source IP address when the source NAT is
enabled.

The fifth stage 760 performs logical [.3 egress ACL
lookups for determining access control before the logical
router 225 routes the packet out of the logical router 225
through the port determined in the stage 740. The L3 egress
ACL lookups are performed based on the [.3 addresses (e.g.,
source and destination IP addresses) of the packet.

The sixth stage 761 performs address resolution in order
to translate the destination .3 address (e.g., a destination IP
address) into a destination [.2 address (e.g., a destination
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MAC address). In some embodiments, the L3 router 635
uses a standard address resolution (e.g., by sending out ARP
requests or looking up ARP cache) to find the destination [.2
address that corresponds to the destination IP address.

When the logical router 225 is not coupled to the desti-
nation logical network, the logical switch 220 sends the
packet to another logical router network towards the desti-
nation logical network. When the logical router 225 is
coupled to the destination logical network, the logical switch
220 routes the packet to the destination logical network (i.e.,
the logical switch that forwards the packet for the destina-
tion logical network).

The L2 processing 215, in some embodiments, includes
eight stages 765-798 for processing the packet through the
logical switch 230 in another logical network (not shown in
FIG. 7) that is implemented across the managed switching
elements 620 and 625. In some embodiments, the managed
switching element 625 in the managed network that receives
the packet performs the L2 processing 215 when the man-
aged switching element 625 receives the packet from the
managed switching element 620. The stages 765-798 are
similar to the stage 705-740, respectively, except that the
stage 765-798 are performed by the logical switch 230 (i.e.,
by the managed switching elements 620 and 625 that
implement the logical switch 230). That is, the stages
765-798 are performed to forward the packet received from
the L3 router 635 to the destination through the managed
switching elements 620 and 625.

FIG. 8 conceptually illustrates an example network archi-
tecture 800 of some embodiments which implements the
logical router 225 and logical switches 220 and 230. Spe-
cifically, the network architecture 800 represents a physical
network that effectuate logical networks whose data packets
are switched and/or routed by the logical router 225 and the
logical switches 220 and 230. The figure illustrates in the top
half of the figure the logical router 225 and the logical
switches 220 and 230. This figure illustrates in the bottom
half of the figure an L3 router 860. Also illustrated in the
bottom half are a second-level managed switching element
810, managed switching elements 815 and 820 which are
running in hosts 890, 880, and 885 (e.g., machines operated
by operating systems such as Windows™ and Linux™),
respectively. The figure illustrates VMs 1-4 in both the top
and the bottom of the figure.

In this example, the logical switch 220 forwards data
packets between the logical router 225, VM 1, and VM 2.
The logical switch 230 forwards data packets between the
logical router 225, VM 3, and VM 4. As mentioned above,
the logical router 225 routes data packets between the
logical switches 220 and 230 and possibly other logical
routers and switches (not shown). The logical switches 220
and 230 and the logical router 225 are logically coupled
through logical ports (not shown) and exchange packets
through the logical ports. These logical ports are mapped to
physical ports of the L3 router 860 and the managed
switching elements 810, 815 and 820.

In some embodiments, each of the logical switches 220
and 230 is implemented across the managed switching
elements 815 and 820 and possibly other managed switching
elements (not shown). In some embodiments, the logical
router 225 is implemented in the L3 router 860 which is
communicatively coupled to the managed switching element
810.

In this example, the managed switching elements 810,
815 and 820 are software switching elements running in
hosts 890, 880 and 885, respectively. The managed switch-
ing elements 810, 815 and 820 have flow entries which
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implement the logical switches 220 and 230. Using these
flow entries, the managed switching elements 815 and 820
route network data (e.g., packets) between network elements
in the network that are coupled to the managed switching
elements 810, 815 and 820. For instance, the managed
switching element 815 routes network data between VMs 1
and 3, and the second-level managed switching element 810.
Similarly, the managed switching element 820 routes net-
work data between VMs 2 and 4, and the second-level
managed switching element 810. As shown, the managed
switching elements 815 and 820 each have three ports
(depicted as numbered squares) through which to exchange
data packets with the network elements that are coupled to
the managed switching elements 815 and 820.

The managed switching element 810 is similar to the
managed switching element 305 described above by refer-
ence to FIG. 3 in that the managed switching element 810 is
a second-level managed switching element that functions as
an extender. The managed switching element 810 runs in the
same host as the L3 router 860, which in this example is a
software router.

In some embodiments, tunnels are established by the
network control system (not shown) to facilitate communi-
cation between the network elements. For instance, the
managed switching element 810 is coupled to the managed
switching element 815, which runs in the host 880, through
a tunnel that terminates at port 2 of the managed switching
element 815 as shown. Similarly, the managed switching
element 810 is coupled to the managed switching element
820 through a tunnel that terminates at port 1 of the managed
switching element 820.

Different types of tunneling protocols are supported in
different embodiments. Examples of tunneling protocols
include control and provisioning of wireless access points
(CAPWAP), generic route encapsulation (GRE), GRE Inter-
net Protocol Security (IPsec), among other types of tunnel-
ing protocols.

In this example, each of the hosts 880 and 885 includes a
managed switching element and several VMs as shown.
VMs 1-4 are virtual machines that are each assigned a set of
network addresses (e.g., a MAC address for L2, an IP
address for 1.3, etc.) and can send and receive network data
to and from other network elements. The VMs are managed
by hypervisors (not shown) running on the hosts 880 and
885.

Several example data exchanges through the network
architecture 800 will now be described. When VM 1 that is
coupled to the logical switch 220 sends a packet to VM 2
that is also coupled to the same logical switch 220, the
packet is first sent to the managed switching element 815.
The managed switching element 815 then performs the [.2
processing 205 on the packet because the managed switch-
ing element 815 is the edge switching element that receives
the packet from VM 1. The result of the 1.2 processing 205
on this packet would indicate that the packet should be sent
to the managed switching element 820 to get to VM 2
through port 4 of the managed switching element 820.
Because VMs 1 and 2 are in the same logical network and
therefore 1.3 routing for the packet is not necessary, no L3
processing needs to be performed on this packet. The packet
is then sent to the managed switching element 820 via the
second-level managed switching element 810 which is
bridging between the managed switching element 815 and
the managed switching element 820. The packet reaches VM
2 through port 4 of the managed switching element 820.

When VM 1 that is coupled to the logical switch 220
sends a packet to VM 3 that is coupled to the logical switch
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230, the packet is first sent to the managed switching
element 815. The managed switching element 815 performs
a portion of .2 processing on the packet. However, because
the packet is sent from one logical network to another (i.e.,
the logical L3 destination address of the packet is for another
logical network), an L3 processing needs to be performed on
this packet.

The managed switching element 815 sends the packet to
the second-level managed switching element 810 so that the
managed switching element 810 performs the rest of the [.2
processing on the packet to forward the packet to the L3
router 860. The result of .3 processing performed at the L3
router 860 would indicate that the packet should be sent back
to the managed switching element 810. The managed
switching element 810 then performs a portion of another [.2
processing and forwards the packet received from the L3
router 860 back to the managed switching element 815. The
managed switching element 815 performs the [.2 processing
215 on the packet received from the managed switching
element 810 and the result of this L2 processing would
indicate that the packet should be sent to VM 3 through port
5 of the managed switching element 815.

When VM 1 that is coupled to the logical switch 220
sends a packet to VM 4 that is coupled to the logical switch
230, the packet is first sent to the managed switching
element 815. The managed switching element 815 performs
the 1.2 processing 205 on the packet. However, because the
packet is sent from one logical network to another, an L3
processing needs to be performed.

The managed switching element 815 sends the packet to
the L3 router 860 via the managed switching element 810 so
that the L3 router 860 performs the 1.3 processing 210 on the
packet. The result of the L3 processing 210 performed at the
L3 router 860 would indicate that the packet should be sent
to the managed switching element 820. The managed
switching element 810 then performs a portion of .2 pro-
cessing on the packet received from the managed switching
element and the result of this L.2 processing would indicate
that the packet should be sent to VM 4 through the managed
switching element 820. The managed switching element 820
performs the rest of the 1.2 processing to determine that the
packet should be sent to VM 4 through port 5 of the managed
switching element 820.

FIG. 9 conceptually illustrates an example network archi-
tecture 900 of some embodiments which implements the
logical router 225 and logical switches 220 and 230. Spe-
cifically, the network architecture 900 represents a physical
network that effectuate logical networks whose data packets
are switched and/or routed by the logical router 225 and the
logical switches 220 and 230. The figure illustrates in the top
half of the figure the logical router 225 and the logical
switches 220 and 230. This figure illustrates in the bottom
half of the figure the L3 router 860. Also illustrated in the
bottom half are a second-level managed switching element
905, the second-level managed switching element 810, and
managed switching elements 815 and 820 which are running
in hosts 910, 890, 880, and 885, respectively. The figure
illustrates VMs 1-4 in both the top and the bottom of the
figure.

The network architecture 900 is similar to the network
architecture 800 except that the network architecture 900
additionally includes the managed switching element 905
which runs in the host 910. The managed switching element
905 of some embodiments is a second-level managed
switching element that functions as a pool node.

In some embodiments, tunnels are established by the
network control system (not shown) to facilitate communi-
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cation between the network elements. For instance, the
managed switching element 815 in this example is coupled
to the managed switching element 905, which runs in the
host 910, through a tunnel that terminates at port 1 of the
managed switching element 815 as shown. Similarly, the
managed switching element 820 is coupled to the managed
switching element 905 through a tunnel that terminates at
port 2 of the managed switching elements 820. Also, the
managed switching elements 905 and 810 are coupled
through a tunnel as shown.

The logical router 225 and the logical switches 220 and
230 are implemented in the L3 router 860 and the managed
switching elements 810, 815, and 820 as described by
reference to FIG. 8 above, except that the second-level
managed switching element 905 is involved in the data
packet exchange. That is, the managed switching elements
815 and 810 exchange packets through the managed switch-
ing element 905.

FIG. 10 conceptually illustrates an example network
architecture 1000 of some embodiments which implements
the logical router 225 and logical switches 220 and 230. The
network architecture 1000 is similar to the network archi-
tecture 800 except that there is a tunnel established between
the managed switching element 810 and the managed
switching element 820. This figure illustrates that the net-
work architecture 1000 of some embodiments is a mixture of
the network architecture 800 and the network architecture
900. That is, some managed edge switching elements have
tunnels to a second-level managed switching element that is
coupled to a centralized L3 router while other managed edge
switching elements have to go through a second-level man-
aged switching element that functions as a pool node in
order to exchange packets with a second-level managed
switching element that is coupled to the centralized L3
router.

FIG. 11 conceptually illustrates an example architecture
of the host 890 of some embodiments that includes the
managed switching element 810 and the L3 router 860 (not
shown). Specifically, this figure illustrates that the 1.3 router
860 is configured in a namespace 1120 of the host 890. The
host 890, in some embodiments, is a machine that is man-
aged by an operating system (e.g., Linux) that is capable of
creating namespaces and virtual machines. As shown, the
host 890 in this example includes a managed switching
element 810, the namespace 1120, and a NIC 845. This
figure also illustrates a controller cluster 1105.

The controller cluster 1105 is a set of network controllers
or controller instances that manage the network elements,
including the managed switching element 810. The managed
switching element 810 in this example is a software switch-
ing element implemented in the host 890 that includes a user
space 1112 and a kernel 1110. The managed switching
element 810 includes a control daemon 1115 running in the
user space 1115; and controller patch 1130 and a bridge 1135
running in the kernel 1110. The user space 1115 and the
kernel 1110, in some embodiments, is of an operating system
for the host 890 while in other embodiments the user space
1115 and the kernel 1110 is of a virtual machine that is
running on the host 890.

In some embodiments, the controller cluster 1105 com-
municates with a control daemon 1115 (e.g., by using
OpenFlow protocol or another communication protocol),
which, in some embodiments, is an application running in
the background of the user space 1112. The control daemon
1115 communicates with the controller cluster 1105 in order
to process and route packets that the managed switching
element 810 receives. Specifically, the control daemon 1115,
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in some embodiments, receives configuration information
from the controller cluster 1105 and configures the controller
patch 1130. For example, the control daemon 1115 receives
commands from the controller cluster 1105 regarding opera-
tions for processing and routing packets that the managed
switching element 810 receives.

The control daemon 1115 also receives configuration
information for the controller patch 1130 to set up ports (not
shown) connecting to the logical router (not shown) imple-
mented in the namespace 1120 such that the logical router
populates the routing tables and other tables with appropri-
ate entries.

The controller patch 1130 is a module that runs in the
kernel 1110. In some embodiments, the control daemon 1115
configures the controller patch 1130. When configured, the
controller patch 1130 contains rules (e.g., flow entries)
regarding processing and forwarding the packets to receive.
The controller patch 1130 of some embodiments also creates
a set of ports (e.g., VIFs) to exchange packets with the
namespace 1120.

The controller patch 1130 receives packets from a net-
work stack 1150 of the kernel 1110 or from the bridge 1135.
The controller patch 1130 determines which namespace to
which to send the packets based on the rules regarding
processing and routing the packets. The controller patch
1130 also receives packets from the namespace 1120 and
sends the packets to the network stack 1150 or the bridge
1135 based on the rules. More details about architecture of
a managed switching element are described in U.S. patent
application Ser. No. 13/177,535.

The namespace 1120 (e.g., Linux namespace) is a con-
tainer created in the host 890. The namespace 1120 can
implement network stacks, network devices, network
addresses, routing tables, network address translation tables,
network caches, etc. (not all of these are shown in FIG. 11).
The namespace 1120 thus can implement a logical router
when the namespace is configured to handle packets with
logical source or destination addresses. The namespace 1120
can be configured to handle such packets, for example, by
configuring the routing tables 1155 of the namespace. In
some embodiments, the namespace 1120 populates the rout-
ing tables 1155 as the namespace 1120 connects to the
managed switching element 810 and exchanges packets (i.e.,
dynamic routing). In other embodiments, the controller
cluster 1105 may directly configure the routing tables 1155
by populating the routing tables 1155 with routes.

Moreover, the namespace, in some embodiments, also
performs network address translation (NAT) on the packets
that the namespaces route. For instance, when the
namespace changes the source network address of the
received packet into another network address (i.e., performs
source NAT).

The bridge 1135 routes network data between the network
stack 1150 and network hosts external to the host (i.e.,
network data received through the NIC 1145). As shown, the
bridge 1135 routes network data between the network stack
1150 and the NIC 1145 and between the controller patch
1130 and the NIC 1145. The bridge 1135 of some embodi-
ments performs standard L2 packet learning and routing.

The network stack 1150 can receive packets from network
hosts external to the managed switching element 810
through the NIC 1145. The network stack 1150 then sends
the packets to the controller patch 1130. In some cases, the
packets are received from network hosts external to the
managed switching element through tunnels. In some
embodiments, the tunnels terminate at the network stack
1150. Thus, when the network stack 1150 receives a packet
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through a tunnel, the network stack 1150 unwraps the tunnel
header (i.e., decapsulates the payload) and sends the
unwrapped packet to the controller patch 1130.

An example operation of the managed switching element
810 and the namespace 1120 will now be described. In this
example, tunnels are established between the managed
switching element 810 and the managed switching elements
815 and 820 (not shown in FIG. 11) that are external to the
host 890. That is, the managed switching elements 810, 815,
and 820 are connected through the tunnels as illustrated in
FIG. 8. The tunnels terminate at the network stack 1150.

The managed switching element 815 sends a packet, sent
by VM1 to VM 4, to the managed switching element 810.
The packet is received by the NIC 1145 and then is sent to
the bridge 1135. Based on the information in the packet
header, the bridge 1135 determines that the packet is sent
over the established tunnel and sends the packet to the
network stack 1150. The network stack 1150 unwraps the
tunnel header and sends the unwrapped packet to the con-
troller patch 1130.

According to the rules that the controller patch 1130 has,
the controller patch 1130 sends the packet to the namespace
1120 because the packet is sent from one logical network to
another logical network. For instance, the rules may say a
packet with certain destination MAC address should be sent
to the namespace 1120. In some cases, the controller patch
1130 removes logical context from the packet before send-
ing the packet to the namespace. The namespace 1120 then
performs an .3 processing on the packet to route the packet
between the two logical networks.

By performing the L3 processing, the namespace 1120
determines that the packet should be sent to the controller
patch 1130 because the destination network layer address
should go to a logical switch that belongs to the destination
logical network. The controller patch 1130 receives the
packet and sends the packet through the network stack 1150,
the bridge 1135, and the NIC 1145 over the tunnel to the
managed switching element 820 that implements the logical
switch that belongs to the destination logical network.

As described above, some embodiments implement the
L3 router 860 in the namespace 1120. Other embodiments,
however, may implement the L3 router 860 in a VM that
runs on the host 890.

FIG. 12 conceptually illustrates an example implementa-
tion of logical switches and logical routers in managed
switching elements and L3 routers. Specifically, this figure
illustrates implementation of the logical router 225 and the
logical switches 220 and 230 in the host 890, which includes
the second-level managed switching element 810 and the L3
router 860, and the managed switching elements 815 and
820. The figure illustrates in the left half of the figure, the
logical router 225 and the logical switches 220 and 230. This
figure illustrates in the right half of the figure, the second-
level managed switching element 810, and managed switch-
ing elements 815 and 820. The figure illustrates VMs 1-4 in
both the right and the left halves of the figure. For simplicity,
this figure does not illustrate all the components of the
managed switching element, e.g., the network stack 1150.

The logical switches 220 and 230 and the logical router
225 are logically coupled through logical ports. As shown,
a logical port X of the logical switch 220 is coupled to the
logical port 1 of the logical router 225. Similarly, a logical
portY of the logical switch 230 is coupled to the logical port
2 of the logical router 225. The logical switches 220 and 230
exchange data packets with the logical router 225 through
these logical ports. Also, in this example, the logical switch
220 associates the logical port X with a MAC address
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01:01:01:01:01:01 which is a MAC address of the logical
port 1 of the logical router 225. When the logical switch 220
receives a packet that needs an [.3 processing, the logical
switch 220 sends the packet out to the logical router 225
through port X. Similarly, the logical switch 230 associates
the logical port Y with a MAC address 01:01:01:01:01:02
which is a MAC address of the logical port 2 of the logical
router 225. When the logical switch 230 receives a packet
that needs an [.3 processing, the logical switch 230 sends the
packet out to the logical router 225 through port Y.

In this example, the controller cluster 1105 (not shown in
FIG. 12) configures the managed switching element 810
such that port 1 of the managed switching element 810 is
associated with the same MAC address, 01:01:01:01:01:01,
that is associated with port X of the logical switch 220.
Accordingly, when the managed switching element 810
receives a packet that has this MAC address as destination
MAC address, the managed switching element 810 sends the
packet out to the L3 router 860 (configured in the namespace
1120) through the port 1 of the managed switching element
810. As such, port X of the logical switch 220 is mapped to
port 1 of the managed switching element 810.

Similarly, port 2 of the managed switching element 810 is
associated with the same MAC address, 01:01:01:01:01:02,
that is associated with port Y of the logical switch 230.
Accordingly, when the managed switching element 810
receives a packet that has this MAC address as destination
MAC address, the managed switching element 810 sends the
packet out to the L3 router 860 through the port 2 of the
managed switching element 810. As such, port Y of the
logical switch 230 is mapped to port 2 of the managed
switching element 810.

In this example, the logical router 225 has logical ports 1
and 2 and other logical ports (not shown). Port 1 of the
logical router 225 is associated with an IP address 1.1.1.1/
24, which represents a subnet behind port 1. That is, when
the logical router 225 receives a packet to route and the
packet has a destination IP address, e.g., 1.1.1.10, the logical
router 225 sends this packet towards the destination logical
network (e.g., a logical subnet) through port 1.

Similarly, port 2 of the logical router 225 in this example
is associated with an IP address 1.1.2.1/24, which represents
a subnet behind port 2. The logical router 225 sends a packet
with a destination IP address, e.g., 1.1.2.10, to the destina-
tion logical network through port 2.

In this example, the L3 router 860 implements the logical
router 225 by populating the L3 router 860°s routing tables
(not shown) with routes. In some embodiments, the L3
router 860 populates its routing tables when the managed
switching element 810 establishes connection with the L3
router 860 and send a packet. For instance, when the L3
router receives an initial packet from the managed switching
element, the L3 router 860 finds out that packets that have
the initial packet’s source address as destination addresses
should be sent to the managed switching element 810. The
L3 router may also perform a standard address resolution
(e.g., by sending out ARP requests) to find out where to send
the initial packet. The 1.3 router 860 will store these “routes”
in the routing tables and look up these tables when making
routing decisions for the packets that the [.3 router receives
subsequently. Other L3 routers (not shown) may populate
their routing tables in a similar manner.

In other embodiments, the controller cluster configures
the routing table of the .3 router 860 such that port 1 of the
L3 router 860 is associated with the same IP address that is
associated with port 1 of the logical router 225. Similarly,
port 2 of the L3 router 860 is associated with the same IP
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address that is associated with port 2 of the logical router
225. In a similar manner, another logical switch (not shown)
may be implemented in another L3 router (not shown) of the
managed switching element. In some of these embodiments,
the control cluster may employ one or more routing proto-
cols to configure the L3 router.

FIGS. 13A-13C conceptually illustrate an example opera-
tion of the logical switches 220 and 230, the logical router
225 implemented in the managed switching elements 810,
815 and 820 and the L3 router 860 described above by
reference to FIG. 12. Specifically, FIG. 13A-13C illustrate
how a packet sent from VM 1 to VM 4 reaches VM 4.

When VM 1 that is coupled to the logical switch 220
sends a packet 1330 to VM 4 that is coupled to the logical
switch 230, the packet is first sent to the managed switching
element 815 through port 4 of the managed switching
element 815. The managed switching element 815 performs
an [.2 processing on the packet.

As shown in the top half of FIG. 13A, the managed
switching element 815 includes a forwarding table that
includes rules (e.g., flow entries) for processing and for-
warding the packet 1330. When the managed switching
element 815 receives the packet 1330 from VM 1 through
port 4 of the managed switching element 815, the managed
switching element 815 begins processing the packet 1330
based on the forwarding tables of the managed switching
element 815. In this example, the packet 1330 has a desti-
nation IP address of 1.1.2.10, which is the IP address of VM
4. The packet 1330°s source IP address is 1.1.1.10. The
packet 1330 also has VM 1’s MAC address as a source
MAC address and the MAC address of the logical port 1
(ie., 01:01:01:01:01:01) of the logical router 225 as a
destination MAC addresses.

The managed switching element 815 identifies a record
indicated by an encircled 1 (referred to as “record 1”) in the
forwarding tables that implements the context mapping of
the stage 1340. The record 1 identifies the packet 1330’s
logical context based on the inport, which is the port 4
through which the packet 1330 is received from VM 1. In
addition, the record 1 specifies that the managed switching
element 815 store the logical context of the packet 1330 in
a set of fields (e.g., a VLAN id field) of the packet 1330°s
header in some embodiments. In other embodiments, the
managed switching element 815 stores the logical context
(i.e., the logical switch to which the packet belongs as well
as the logical ingress port of that logical switch) in a register,
or meta field, of the switch, rather than in the packet. The
record 1 also specifies the packet 1330 be further processed
by the forwarding tables (e.g., by sending the packet 1330 to
a dispatch port). A dispatch port is described in U.S. patent
application Ser. No. 13/177,535.

Based on the logical context and/or other fields stored in
the packet 1330°s header, the managed switching element
815 identifies a record indicated by an encircled 2 (referred
to as “record 2”) in the forwarding tables that implements
the ingress ACL of the stage 1342. In this example, the
record 2 allows the packet 1330 to be further processed (i.e.,
the packet 1330 can get through the ingress port of the
logical switch 220) and, thus, specifies the packet 1330 be
further processed by the forwarding tables (e.g., by sending
the packet 1330 to a dispatch port). In addition, the record
2 specifies that the managed switching element 815 store the
logical context (i.e., the packet 1330 has been processed by
the second stage 1342 of the processing pipeline 1300) of the
packet 1330 in the set of fields of the packet 1330°s header.

Next, the managed switching clement 815 identifies,
based on the logical context and/or other fields stored in the
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packet 1330’s header, a record indicated by an encircled 3
(referred to as “record 3”) in the forwarding tables that
implements the logical .2 forwarding of the stage 1344. The
record 3 specifies that a packet with the MAC address of the
logical port 1 of the logical router 225 as a destination MAC
address is to be sent to the logical port X of the logical
switch 220.

The record 3 also specifies that the packet 1330 be further
processed by the forwarding tables (e.g., by sending the
packet 1330 to a dispatch port). Also, the record 3 specifies
that the managed switching element 815 store the logical
context (i.e., the packet 1330 has been processed by the third
stage 1344 of the processing pipeline 1300) in the set of
fields of the packet 1330’s header.

Based on the logical context and/or other fields stored in
the packet 1330°s header, the managed switching element
815 identifies a record indicated by an encircled 4 (referred
to as “record 4”) in the forwarding tables that implements
the context mapping of the stage 1346. In this example, the
record 4 identifies port 1 of the managed switching element
810, to which port 1 of the L3 router 860 is coupled, as the
port that corresponds to the logical port X of the logical
switch 220 to which the packet 1330 is to be forwarded. The
record 4 additionally specifies that the packet 1330 be
further processed by the forwarding tables (e.g., by sending
the packet 1330 to a dispatch port).

Based on the logical context and/or other fields stored in
the packet 1330°s header, the managed switching element
815 then identifies a record indicated by an encircled 5
(referred to as “record 5”) in the forwarding tables that
implements the physical mapping of the stage 1348. The
record 5 specifies that the packet 1330 is to be sent through
port 1 of the managed switching element 815 in order for the
packet 1330 to reach the managed switching element 810. In
this case, the managed switching element 815 is to send the
packet 1330 out of the port 1 of managed switching element
815 that is coupled to the managed switching element 810.

As shown in the bottom half of FIG. 13A, the managed
switching element 810 includes a forwarding table that
includes rules (e.g., flow entries) for processing and routing
the packet 1330. When the managed switching element 810
receives the packet 1330 from the managed switching ele-
ment 815, the managed switching element 810 begins pro-
cessing the packet 1330 based on the forwarding tables of
the managed switching element 810. The managed switch-
ing element 810 identifies a record indicated by an encircled
1 (referred to as “record 17) in the forwarding tables that
implements the context mapping of the stage 1350. The
record 1 identifies the packet 1330’s logical context based
on the logical context that is stored in the packet 1330°s
header. The logical context specifies that the packet 1330 has
been processed by the second and third stages 1342 and
1344, which were performed by the managed switching
element 815. As such, the record 1 specifies that the packet
1330 be further processed by the forwarding tables (e.g., by
sending the packet 1330 to a dispatch port).

Next, the managed switching element 810 identifies,
based on the logical context and/or other fields stored in the
packet 1330’s header, a record indicated by an encircled 2
(referred to as “record 2”) in the forwarding tables that
implements the egress ACL of the stage 1352. In this
example, the record 2 allows the packet 1330 to be further
processed (e.g., the packet 1330 can get out of the logical
switch 220 through port “X” of the logical switch 220) and,
thus, specifies the packet 1330 be further processed by the
forwarding tables (e.g., by sending the packet 1330 to a
dispatch port). In addition, the record 2 specifies that the
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managed switching element 810 store the logical context
(i.e., the packet 1330 has been processed by the stage 1352
of'the processing pipeline 1300) of the packet 1330 in the set
of fields of the packet 1330’s header.

Next, the managed switching clement 810 identifies,
based on the logical context and/or other fields stored in the
packet 1330’s header, a record indicated by an encircled 3
(referred to as “record 3”) in the forwarding tables that
implements the physical mapping of the stage 1354. The
record 3 specifies the port of the managed switching element
810 through which the packet 1330 is to be sent in order for
the packet 1330 to reach the L3 router 860. In this case, the
managed switching element 810 is to send the packet 1330
out of port 1 of managed switching element 810 that is
coupled to the port 1 of the L3 router 860. In some
embodiments, the managed switching element 810 removes
the logical context from the packet 1330 before sending the
packet to the L3 router 860.

As shown in the top half of FIG. 13B, the L3 router 860
includes an ingress ACL table, a routing table, and an egress
ACL table that includes entries for processing and routing
the packet 1330. When the [.3 router 860 receives the packet
1330 from the managed switching element 810, the L3
router 860 begins processing the packet 1330 based on these
tables of the L3 router 860. The L3 router 860 identifies an
entry indicated by an encircled 1 (referred to as “entry 1)
in the ingress ACL table that implements .3 ingress ACL by
specifying that the 1.3 router 860 should accept the packet
based on the information in the header of the packet 1330.
The L3 router 860 then identifies an entry indicated by an
encircled 2 (referred to as “entry 2”) in the routing table that
implements 1.3 routing 558 by specifying that the packet
1330 with its destination IP address (i.e., 1.1.2.10) should be
sent to the logical switch 230 through port 2 of the logical
router 225. The L3 router 860 then identifies an entry
indicated by an encircled 3 (referred to as “entry 3”) in the
egress ACL table that implements 1.3 egress ACL by speci-
fying that the L3 router 860 can send the packet out through
port 2 of the logical router 225 based on the information in
the header of the packet 1330. Also, the L3 router 860
rewrites the source MAC address for the packet 1330 to the
MAC address of port 2 of the L3 router 860 (i.e., 01:01:01:
01:01:02).

The L3 router 860 then performs an address resolution to
translate the destination IP address into the destination MAC
address. In this example, the [.3 router 860 looks up an ARP
cache to find the destination MAC address to which the
destination IP address is mapped. The [.3 router 860 may
send out ARP requests if the ARP cache does not have a
corresponding MAC address for the destination IP address.
The destination IP address would be resolved to the MAC
address of VM 4. The L3 router 860 then rewrites the
destination MAC of the packet 1330 using the MAC address
to which the destination IP address is resolved. The L3
router 860 would send the packet 1330 to the logical switch
230 through the logical port 2 of the L3 router 860 based on
the new destination MAC address.

As shown in the bottom half of FIG. 13B, the managed
switching element 810 includes a forwarding table that
includes rules (e.g., flow entries) for processing and for-
warding the packet 1330. When the managed switching
element 810 receives the packet 1330 from the [.3 router 860
through port 2 of the managed switching element 810, the
managed switching element 810 begins processing the
packet 1330 based on the forwarding tables of the managed
switching element 810. The managed switching element 810
identifies a record indicated by an encircled 4 (referred to as
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“record 4”) in the forwarding tables that implements the
context mapping of the stage 1362. The record 4 identifies
the packet 1330’s logical context based on the inport, which
is the port 2 through which the packet 1330 is received from
the L3 router 860. In addition, the record 4 specifies that the
managed switching element 810 store the logical context of
the packet 1330 in a set of fields (e.g., a VLAN id field) of
the packet 1330°s header. The record 4 also specifies the
packet 1330 be further processed by the forwarding tables
(e.g., by sending the packet 1330 to a dispatch port).

Based on the logical context and/or other fields stored in
the packet 1330°s header, the managed switching element
810 identifies a record indicated by an encircled 5 (referred
to as “record 5”) in the forwarding tables that implements
the ingress ACL of the stage 1364. In this example, the
record 5 allows the packet 1330 to be further processed and,
thus, specifies the packet 1330 be further processed by the
forwarding tables (e.g., by sending the packet 1330 to a
dispatch port). In addition, the record 5 specifies that the
managed switching element 810 store the logical context
(i.e., the packet 1330 has been processed by the stage 1362
of'the processing pipeline 1300) of the packet 1330 in the set
of fields of the packet 1330’s header.

Next, the managed switching element 810 identifies,
based on the logical context and/or other fields stored in the
packet 1330’s header, a record indicated by an encircled 6
(referred to as “record 6”) in the forwarding tables that
implements the logical .2 forwarding of the stage 1366. The
record 6 specifies that a packet with the MAC address of VM
4 as the destination MAC address should be forwarded
through the logical port (not shown) of the logical switch
230.

The record 6 also specifies that the packet 1330 be further
processed by the forwarding tables (e.g., by sending the
packet 1330 to a dispatch port). Also, the record 6 specifies
that the managed switching element 810 store the logical
context (i.e., the packet 1330 has been processed by the
stage 1366 of the processing pipeline 1300) in the set of
fields of the packet 1330’s header.

Based on the logical context and/or other fields stored in
the packet 1330°s header, the managed switching element
810 identifies a record indicated by an encircled 7 (referred
to as “record 7”) in the forwarding tables that implements
the context mapping of the stage 1368. In this example, the
record 7 identifies port 5 of the managed switching element
820 to which VM 4 is coupled as the port that corresponds
to the logical port (determined at stage 1366) of the logical
switch 230 to which the packet 1330 is to be forwarded. The
record 7 additionally specifies that the packet 1330 be
further processed by the forwarding tables (e.g., by sending
the packet 1330 to a dispatch port).

Based on the logical context and/or other fields stored in
the packet 1330°s header, the managed switching element
810 then identifies a record indicated by an encircled 8
(referred to as “record 8”) in the forwarding tables that
implements the physical mapping of the stage 1370. The
record 8 specifies a port (not shown) of the managed
switching element 810 through which the packet 1330 is to
be sent in order for the packet 1330 to reach the managed
switching element 820. In this case, the managed switching
element 810 is to send the packet 1330 out of the port of
managed switching element 810 that is coupled to the
managed switching element 820.

As shown in FIG. 13C, the managed switching element
820 includes a forwarding table that includes rules (e.g.,
flow entries) for processing and routing the packet 1330.
When the managed switching element 820 receives the
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packet 1330 from the managed switching element 810, the
managed switching element 820 begins processing the
packet 1330 based on the forwarding tables of the managed
switching element 820. The managed switching element 820
identifies a record indicated by an encircled 4 (referred to as
“record 4”) in the forwarding tables that implements the
context mapping of the stage 1372. The record 4 identifies
the packet 1330°s logical context based on the logical
context that is stored in the packet 1330’s header. The logical
context specifies that the packet 1330 has been processed by
the stages 1364 and 1366, which were performed by the
managed switching element 810. As such, the record 4
specifies that the packet 1330 be further processed by the
forwarding tables (e.g., by sending the packet 1330 to a
dispatch port).

Next, the managed switching clement 820 identifies,
based on the logical context and/or other fields stored in the
packet 1330’s header, a record indicated by an encircled 5
(referred to as “record 5”) in the forwarding tables that
implements the egress ACL of the stage 1374. In this
example, the record 5 allows the packet 1330 to be further
processed and, thus, specifies the packet 1330 be further
processed by the forwarding tables (e.g., by sending the
packet 1330 to a dispatch port). In addition, the record 5
specifies that the managed switching element 820 store the
logical context (i.e., the packet 1330 has been processed by
the stage 1374 of the processing pipeline 1300) of the packet
1330 in the set of fields of the packet 1330°s header.

Next, the managed switching clement 820 identifies,
based on the logical context and/or other fields stored in the
packet 1330’s header, a record indicated by an encircled 6
(referred to as “record 6”) in the forwarding tables that
implements the physical mapping of the stage 1376. The
record 6 specifies the port 5 of the managed switching
element 820 through which the packet 1330 is to be sent in
order for the packet 1330 to reach VM 4. In this case, the
managed switching element 820 is to send the packet 1330
out of port 5 of managed switching element 820 that is
coupled to VM 4. In some embodiments, the managed
switching element 820 removes the logical context from the
packet 1330 before sending the packet to VM 4.

FIG. 14 conceptually illustrates a process 1400 that some
embodiments perform to forward a packet to determine to
which managed switching element to send a packet. The
process 1400, in some embodiments, is performed by a
managed edge switching element that receives a packet and
forwards that packet to another managed switching element
or a destination machine for the packet.

The process 1400 begins by receiving (at 1405) a packet
from a source machine. The process 1400 then performs (at
1410) a portion of L2 processing. As the process performs
the [.2 processing, the process 1400 determines (at 1415)
whether the packet needs to be sent to a second level
managed switching element for further processing of the
packet. In some embodiments, the process makes this deter-
mination based on the destination 1.2 address of the packet.
The process looks at the destination 1.2 address and sends
out the packet through a port that is associated with the
destination [.2 address. For instance, when the packet’s
destination L2 address is an L.2 address of an L3 router, the
process sends the packet out of a port that is associated with
the managed switching element that is associated with an L3
router. When the packet’s destination 1.2 address is an .2
address of the destination machine, the process sends the
packet to the managed switching element that is directly
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connected to the destination machine or to the managed
switching element that is closer in the route to the destina-
tion machine.

When the process 1400 determines (at 1415) that the
packet needs to be sent to a second level managed switching
element, the process 1400 sends (at 1420) the packet to a
second-level managed switching element that is communi-
catively coupled to an L3 router that implements the logical
router. Otherwise, the process 1400 sends (at 1425) the
packet to the destination machine or to another managed
switching element. The process then ends.

FIG. 15 conceptually illustrates the host 890 described
above. Specifically, when the managed switching element
810 receives a packet from an L3 router and the packet is
headed to another L3 router implemented in the same host
890, the managed switching element 810 directly bridges the
two L3 routers based on the flow entries.

As shown, the managed switching element 810 is coupled
to two L3 routers 1 and 2. The flow entries that the managed
switching element 810 contains are shown on the right side
of the figure. The flow entries indicate that the traffic that is
addressed to go from one L3 router to another L3 router
should directly go to the other L3 router.

Also, this figure illustrates that the additional router can
be provisioned in the host 890 in order to provide additional
routing resources when more managed switching elements
are provisioned and rely on the existing 1.3 router to route
additional network traffic.

FIG. 16 conceptually illustrates a process 1600 that some
embodiments use to directly forward a packet from a first .3
router to a second L3 router when the first and the second L3
routers are implemented in the same host. The process 1600,
in some embodiments, is performed by a managed switching
element, such as the managed switching element 810
described above, which exchanges packets with two or more
L3 routers implemented in a single host.

The process 1600 begins by receiving (at 1605) a packet
from a first .3 router. The process 1600 then determines (at
1610) whether the packet is addressed to a second L3 router
that is implemented in the same host in which the first L3
router is implemented. The process 1600 determines this by
examining the information in the header of the packet (e.g.,
destination MAC address).

When the process 1600 determines (at 1610) that the
packets are headed to the second L3 router, the process 1600
sends the packet to the second L3 router. Otherwise, the
process 1600 sends the packet toward the destination of the
packet (e.g., another managed switching element or a des-
tination machine). The process 1600 then ends.

FIGS. 17-24 illustrate a centralized logical router imple-
mented in a managed switching element based on flow
entries of the managed switching element. FIG. 17 concep-
tually illustrates an example implementation of the logical
processing pipeline 200 described above by reference to
FIG. 2. FIG. 17 illustrates a network architecture 1700. In
the network architecture 1700, the logical processing pipe-
line 200 is performed by three managed switching elements
1715, 1720, and 1725. In particular, the L2 processing 205
and the L2 processing 215 are performed in a distributed
manner across managed switching elements 1715, 1720, and
1725. The L3 processing 210 is performed by the managed
switching element 1720 based on flow entries of the man-
aged switching element 1720. FIG. 17 also illustrates source
machine 1710 and destination machine 1730.

The managed switching element 1715 is similar to the
managed switching element 615 described above by refer-
ence to FIG. 6 in that the managed switching element 1715
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is also an edge switching element that directly receives the
packets from a machine coupled to the edge switching
element. The managed switching element 1715 receives
packets from the source machine 1710. When the managed
switching element 1715 receives a packet from the source
machine 1710, the managed switching element 1715 per-
forms a portion of the L2 processing 205 on the packet in
order to logically forward the packet. When the packet is
headed to the destination machine 1730, which is in another
logical network, the packet is forwarded to the managed
switching element 1720

There may be one or more managed switching elements
(not shown) between the managed switching element 1715
and the managed switching element 1720. These managed
switching elements have network constructs (e.g., PIFs,
VIFs, etc.) to which the logical constructs (e.g., logical
ports) of the logical switch 220 (not shown in FIG. 17) are
mapped.

The managed switching element 1720 is a second-level
managed switching element that functions as an extender in
some embodiments. The managed switching element 1720
performs the rest of the [.2 processing 205 and also performs
the L3 processing 210. The managed switching element
1720 also performs a portion of the L2 processing 215 of the
logical processing pipeline 200. The managed switching
element 1720 then sends the packet to the managed switch-
ing element 1725.

There may be one of more managed switching elements
(not shown) between the managed switching element 1720
and the managed switching element 1725. These managed
switching elements have network constructs to which the
logical constructs of the logical switch 220 (not shown in
FIG. 17) are mapped.

The managed switching element 1725 in the example
receives the packet from the managed switching element
1720. The managed switching element 1725 performs the
rest of the L2 processing 215 on the packet in order to
logically forward the packet. In this example, the managed
switching element 1725 is also the switching element that
directly sends the packet to the destination machine 1730.
However, there may be one or more managed switching
elements (not shown) between the managed switching ele-
ment 1725 and the destination machine 1130. These man-
aged switching elements have network constructs to which
the logical constructs of the logical switch 230 (not shown
in FIG. 17) are mapped.

Although the 1.2 processing 205 and the 1.2 processing
215 are performed in a distributed manner in this example,
the L2 processing 205 and the L2 processing 215 do not
have to be performed in a distributed manner. For instance,
the managed switching element 1715 may perform the entire
L2 processing 205 and the managed switching element 1725
may perform the entire L2 processing 215. In such case, the
managed switching element 1720 would perform only the
L3 processing 210 of the logical processing pipeline 200.

FIG. 18 conceptually illustrates the logical processing
pipeline 200 of some embodiments for processing a packet
through the logical switch 220, the logical router 225, and
the logical switch 230. Specifically, this figure illustrates the
logical processing pipeline 200 when performed in the
network architecture 1700 described above by reference to
FIG. 17. As described above, in the network architecture
1700, the .2 processing 205, the L3 processing 210, and the
L2 processing 215 are performed by the managed switching
elements 1715, 1720, and 1725.

The L2 processing 205, in some embodiments, includes
seven stages 1805-1835 for processing a packet through the
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logical switch 220 (not shown in FIG. 18) in a logical
network (not shown) that is implemented across the man-
aged switching elements 1715 and 1720. In some embodi-
ments, the managed switching element 1715 that receives
the packet performs a portion of the L2 processing 205 when
the managed switching element 1715 receives the packet.
The managed switching element 1720 then performs the rest
of the L2 processing 205.

The first five stages 1805-1825 are similar to the first five
stages 705-725 described above by reference to FIG. 7. In
the stage 1805 of the .2 processing 205, ingress context
mapping is performed on the packet to determine the logical
context of the packet. In some embodiments, the stage 1805
is performed when the logical switch 220 receives the packet
(e.g., the packet is initially received by the managed switch-
ing element 1715). After the first stage 1805 is performed,
some embodiments store the information that represents the
logical context in one or more fields of the packet’s header.

In some embodiments, the second stage 1810 is defined
for the logical switch 220. In some such embodiments, the
stage 1810 operates on the packet’s logical context to
determine ingress access control of the packet with respect
to the logical switch. For example, an ingress ACL is applied
to the packet to control the packet’s access to the logical
switch when the logical switch receives the packet. Based on
the ingress ACL defined for the logical switch, the packet
may be further processed (e.g., by the stage 1815) or the
packet may be dropped, for example.

In the third stage 1815 of the L2 processing 205, an [.2
forwarding is performed on the packet in the context of the
logical switch. In some embodiments, the third stage 1815
operates on the packet’s logical context to process and
forward the packet with respect to the logical switch 220.
For instance, some embodiments define an [.2 forwarding
table or L2 forwarding entries for processing the packet at
layer 2. Moreover, when the packet’s destination is in
another logical network (i.e., when the packet’s destination
logical network is different than the logical network whose
traffic is processed by the logical switch 220), the logical
switch 220 sends the packet to the logical router 225, which
will then perform the 1.3 processing 210 in order to route the
packet to the destination logical network. Thus, at the third
stage 1815, the managed switching element 1715 determines
that the packet should be forwarded to the logical router 225
through a logical port (not shown) of the logical switch that
is associated with the logical router 225.

At the fourth stage 1820, egress context mapping is
performed to identify a physical result that corresponds to
the result of the logical forwarding of the packet. For
example, the logical processing of the packet may specify
that the packet is to be sent out of one or more logical ports
(e.g., a logical egress port) of the logical switch 220. As
such, the egress context mapping operation identifies a
physical port(s) of one or more of the managed switching
elements (including the managed switching elements 1715
and 1720) that corresponds to the particular logical port of
the logical switch 220. The managed switching element
1715 determines that the physical port (e.g. a VIF) to which
the logical port determined at the previous stage 1815 is
mapped is a port (not shown) of the managed switching
element 1720.

The fifth stage 1825 of the L2 processing 205 performs a
physical mapping based on the egress context mapping
performed at the fourth stage 1820. In some embodiments,
the physical mapping determines operations for sending the
packet towards the physical port that was determined in the
fourth stage 1820. For example, the physical mapping of
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some embodiments determines one or more queues (not
shown) associated with one or more ports of the set of ports
(not shown) of the managed switching element 1715 that is
performing the 1.2 processing 205 through which to send the
packet in order for the packet to reach the physical port(s)
determined in the fourth stage 1820. This way, the managed
switching elements can forward the packet along the correct
path in the network for the packet to reach the determined
physical port(s).

As shown, the sixth stage 1830 of the 1.2 processing 205
is performed by the managed switching element 1720. The
sixth stage 1830 is similar to the first stage 1805. The stage
1830 is performed when the managed switching element
1720 receives the packet. At the stage 1830, the managed
switching element 1720 looks up the logical context of the
packet and determines that 1.2 egress access control is left to
be performed.

The seventh stage 1835 of some embodiments is defined
for the logical switch 220. The seventh stage 1835 of some
such embodiments operates on the packet’s logical context
to determine egress access control of the packet with respect
to the logical switch 220. For instance, an egress ACL, may
be applied to the packet to control the packet’s access out of
the logical switch 220 after logical forwarding has been
performed on the packet. Based on the egress ACL defined
for the logical switch, the packet may be further processed
(e.g., sent out of a logical port of the logical switch or sent
to a dispatch port for further processing) or the packet may
be dropped, for example.

The L3 processing 210 includes six stages 1840-1856 for
processing a packet through the logical switch 220 (not
shown in FIG. 18) that is implemented in the managed
switching element 1720 based on the [.3 flow entries of the
managed switching element 1720. As mentioned above, L3
processing involves performing a set of logical routing
lookups for determining where to route the packet through
a layer 3 network.

The first stage 1840 performs a logical ingress ACL
lookup for determining access control when the logical
router 225 receives the packet (i.e., when the managed
switching element 1720 which implements the logical router
225 receives the packet). The next stage 1841 performs
DNAT to revert the destination address of the packet back to
the real address of the destination machine that is hidden
from the source machine of the packet. This stage 1841 is
performed when DNAT is enabled.

The next stage 1845 performs a logical L3 routing for
determining one or more logical ports to which send the
packet through the layer 3 network based on the L3
addresses (e.g., destination IP address) of the packet and
routing tables (e.g., containing [.3 entries). Since the logical
router 225 is implemented by the managed switching ele-
ment 1720, the .3 flow entries are configured in the man-
aged switching element 1720.

At the fourth stage 1850, the managed switching element
1720 of some embodiments also performs SNAT on the
packet. For instance, the managed switching element 1720
replaces the source IP address of the packet with a different
IP address in order to hide the source IP address when the
source NAT is enabled. Also, as will be described further
below, the managed switching element may use a NAT
daemon to receive flow entries for translating network
addresses. A NAT daemon will be described further below
by reference to FIG. 31.

The fifth stage 1855 performs logical 1.3 egress ACL
lookups for determining access control before the logical
router 225 routes the packet out of the logical router 225

10

15

20

25

30

35

40

45

50

55

60

65

36
through the port determined in the stage 1845. The L3 egress
ACL lookups are performed based on the [.3 addresses (e.g.,
source and destination IP addresses) of the packet.

The sixth stage 1856 performs address resolution in order
to translate the destination L3 address (e.g., a destination IP
address) into a destination [.2 address (e.g., a destination
MAC address). In some embodiments, the managed switch-
ing element 1720 uses a standard address resolution (e.g., by
sending out ARP requests or looking up ARP cache) to find
the destination [.2 address that corresponds to the destina-
tion IP address. Also, as will be described further below, the
managed switching element 1720 of some embodiments
may use an [.3 daemon to receive flow entries for resolving
L3 addresses into [2 addresses. An L3 daemon will be
described further below by reference to FIGS. 48-50.

When the logical router 225 is not coupled to the desti-
nation logical network, the logical switch 220 sends the
packet to another logical router network towards the desti-
nation logical network. When the logical router 225 is
coupled to the destination logical network, the logical switch
220 routes the packet to the destination logical network (i.e.,
the logical switch that forwards the packet for the destina-
tion logical network).

The L2 processing 215, in some embodiments, includes
seven stages 1860-1890 for processing the packet through
the logical switch 230 in another logical network (not shown
in FIG. 18) that is implemented across the managed switch-
ing elements 1720 and 1725 (not shown). The stages 1860-
1890 are similar to the stage 1805-1835, respectively, except
that the stage 1860-1890 are performed by the logical switch
230 (i.e., by the managed switching elements 1720 and 1725
that implement the logical switch 230).

FIG. 19 conceptually illustrates an example network
architecture 1900 of some embodiments which implements
the logical router 225 and logical switches 220 and 230.
Specifically, the network architecture 1900 represents a
physical network that effectuate logical networks whose data
packets are switched and/or routed by the logical router 225
and the logical switches 220 and 230. The figure illustrates
in the top half of the figure the logical router 225 and the
logical switches 220 and 230. This figure illustrates in the
bottom half of the figure a second-level managed switching
element 1910, managed switching elements 1915 and 1920
which are running in hosts 1990, 1980, and 1985 (e.g.,
machines operated by operating systems such as Windows™
and Linux™), respectively. The figure illustrates VMs 1-4 in
both the top and the bottom of the figure.

In this example, the logical switch 220 forwards data
packets between the logical router 225, VM 1, and VM 2.
The logical switch 230 forwards data packets between the
logical router 225, VM 3, and VM 4. As mentioned above,
the logical router 225 routes data packets between the
logical switches 220 and 230 and possibly other logical
routers and switches (not shown). The logical switches 220
and 230 and the logical router 225 are logically coupled
through logical ports (not shown) and exchange packets
through the logical ports. These logical ports are mapped to
physical ports of the L3 router 1960 and the managed
switching elements 1910, 1915 and 1920.

In some embodiments, each of the logical switches 220
and 230 is implemented across the managed switching
elements 1915 and 1920 and possibly other managed switch-
ing elements (not shown). In some embodiments, the logical
router 225 is implemented in the L3 router 1960 which is
communicatively coupled to the managed switching element
1910.
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In this example, the managed switching elements 1910,
1915 and 1920 are software switching elements running in
hosts 1990, 1980 and 1985, respectively. The managed
switching elements 1910, 1915 and 1920 have flow entries
which implement the logical switches 220 and 230. Using
these flow entries, the managed switching elements 1915
and 1920 forward network data (e.g., packets) between
network elements in the network that are coupled to the
managed switching elements 1910, 1915 and 1920. For
instance, the managed switching element 1915 routes net-
work data between VMs 1 and 3, and the second-level
managed switching element 1910. Similarly, the managed
switching element 1920 routes network data between VMs
2 and 4, and the second-level managed switching element
1910. As shown, the managed switching elements 1915 and
1920 each have three ports (depicted as numbered squares)
through which to exchange data packets with the network
elements that are coupled to the managed switching ele-
ments 1915 and 1920.

The managed switching element 1910 is similar to the
managed switching element 305 described above by refer-
ence to FIG. 4 in that the managed switching element 1910
is a second-level managed switching element that functions
as an extender. The managed switching element 560 also
implements the logical router 225 based on the flow entries.
Using these flow entries, the managed switching element
1910 route packets at L3. In this example, the logical router
225 implemented in the managed switching element 1910
routes packets between the logical switch 220 that is imple-
mented across the managed switching elements 1910 and
1915 and the logical switch 230 implemented across the
managed switching element 1910 and 1920.

In this example, the managed switching element 1910 is
coupled to the managed switching element 1915, which runs
in the host 1980, through a tunnel that terminates at port 2
of'the managed switching element 1915 as shown. Similarly,
the managed switching element 1910 is coupled to the
managed switching element 1920 through a tunnel that
terminates at port 1 of the managed switching elements
1920.

In this example, each of the hosts 1980 and 1985 includes
a managed switching element and several VMs as shown.
The VMs 1-4 are virtual machines that are each assigned a
set of network addresses (e.g., a MAC address for .2, an [P
address for 1.3, etc.) and can send and receive network data
to and from other network elements. The VMs are managed
by hypervisors (not shown) running on the hosts 1980 and

Several example data exchanges through the network
architecture 1900 will now be described. When VM 1 that is
coupled to the logical switch 220 sends a packet to VM 2
that is also coupled to the same logical switch 220, the
packet is first sent to the managed switching element 1915.
The managed switching element 1915 then performs the [.2
processing 205 on the packet because the managed switch-
ing element 1915 is the edge switching element that receives
the packet from VM 1. The result of the 1.2 processing 205
on this packet would indicate that the packet should be sent
to the managed switching element 1920 to get to VM 2
through port 4 of the managed switching element 1920.
Because VMs 1 and 2 are in the same logical network and
therefore 1.3 routing for the packet is not necessary, no L3
processing needs to be performed on this packet. The packet
is then sent to the managed switching element 1920 via the
second-level managed switching element 1910 which is
bridging between the managed switching element 1915 and
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the managed switching element 1920. The packet reaches
VM 2 through port 4 of the managed switching element
1920.

When VM 1 that is coupled to the logical switch 220
sends a packet to VM 3 that is coupled to the logical switch
230, the packet is first sent to the managed switching
element 1915. The managed switching element 1915 per-
forms a portion of L2 processing on the packet. However,
because the packet is sent from one logical network to
another (i.e., the logical L3 destination address of the packet
is for another logical network), an [.3 processing needs to be
performed on this packet.

The managed switching element 1915 sends the packet to
the second-level managed switching element 1910 so that
the managed switching element 1910 performs the rest of
the 1.2 processing and the 1.3 processing 210 on the packet.
The managed switching element 1910 then performs a
portion of another 1.2 processing and forwards the packet to
the managed switching element 1920. The managed switch-
ing element 1915 performs the L2 processing 215 on the
packet received from the managed switching element 1910
and the result of this .2 processing would indicate that the
packet should be sent to VM 3 through port 5 of the managed
switching element 1915.

When VM 1 that is coupled to the logical switch 220
sends a packet to VM 4 that is coupled to the logical switch
230, the packet is first sent to the managed switching
element 1915. The managed switching element 1915 per-
forms the L2 processing 205 on the packet. However,
because the packet is sent from one logical network to
another, an L3 processing needs to be performed.

The managed switching element 1915 sends the packet to
the managed switching element 1910 so that the managed
switching element 1910 performs the rest of L2 processing
205 and the L3 processing 210 on the packet. The result of
the L3 processing 210 performed at the managed switching
element 1910 would indicate that the packet should be sent
to the managed switching element 1915. The managed
switching element 1910 then performs a portion of L2
processing on the packet and the result of this [.2 processing
would indicate that the packet should be sent to VM 4
through the managed switching element 1920. The managed
switching element 1920 performs the rest of the 1.2 process-
ing to determine that the packet should be sent to VM 4
through port 5 of the managed switching element 1920.

FIG. 20 conceptually illustrates an example network
architecture 2000 of some embodiments which implements
the logical router 225 and logical switches 220 and 230.
Specifically, the network architecture 2000 represents a
physical network that effectuate logical networks whose data
packets are switched and/or routed by the logical router 225
and the logical switches 220 and 230. The figure illustrates
in the top half of the figure the logical router 225 and the
logical switches 220 and 230. This figure illustrates in the
bottom half of the figure the second-level managed switch-
ing element 1910, managed switching elements 1915 and
1920 which are running in hosts 1990, 1980, and 1985
respectively. The figure illustrates VMs 1-4 in both the top
and the bottom of the figure.

The network architecture 2000 is similar to the network
architecture 1900 except that the network architecture 2000
additionally includes the managed switching element 2005
which runs in the host 2010. The managed switching ele-
ment 2005 of some embodiments is a second-level managed
switching element that functions as a pool node.

In some embodiments, tunnels are established by the
network control system (not shown) to facilitate communi-
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cation between the network elements. For instance, the
managed switching element 1915 in this example is coupled
to the managed switching element 2005, which runs in the
host 2010, through a tunnel that terminates at port 1 of the
managed switching element 1915 as shown. Similarly, the
managed switching element 1920 is coupled to the managed
switching element 2005 through a tunnel that terminates at
port 2 of the managed switching elements 1920. Also, the
managed switching elements 2005 and 1910 are coupled
through a tunnel as shown.

The logical router 225 and the logical switches 220 and
230 are implemented in the managed switching elements
1910, 1915, and 1920 as described by reference to FIG. 19
above, except that the second-level managed switching
element 2005 is involved in the data packet exchange. That
is, the managed switching elements 1915 and 1910
exchange packets through the managed switching element
2005. The managed switching elements 1920 and 1910
exchange packets through the managed switching element
2005. The managed switching elements 1915 and 1920
exchange packets through the managed switching element
2005.

FIG. 21 conceptually illustrates an example network
architecture 2100 of some embodiments which implements
the logical router 225 and logical switches 220 and 230. The
network architecture 2100 is similar to the network archi-
tecture 1900 except that there is a tunnel established
between the managed switching element 1910 and the
managed switching element 1920. This figure illustrates that
the network architecture 2100 of some embodiments is a
mixture of the network architecture 1900 and the network
architecture 2000. That is, some managed edge switching
elements have tunnels to a second-level managed switching
element that is coupled to a centralized L3 router while other
managed edge switching elements have to go through a
second-level managed switching element that functions as a
pool node in order to exchange packets with a second-level
managed switching element that is coupled to the centralized
L3 router.

FIG. 22 conceptually illustrates an example architecture
of the host 1990 of some embodiments that includes the
managed switching element 1910 that implements a logical
router based on flow entries. The host 1990, in some
embodiments, is a machine that is managed by an operating
system (e.g., Linux) that is capable of creating virtual
machines. As shown, the host 1990 in this example includes
a managed switching element 1910, and a NIC 2245. This
figure also illustrates a controller cluster 2205.

The controller cluster 2205 is a set of network controllers
or controller instances that manage the network elements,
including the managed switching element 1910. The man-
aged switching element 1910 in this example is a software
switching element implemented in the host 1990 that
includes a user space 2212 and a kernel 2210. The managed
switching element 1910 includes a control daemon 2215
running in the user space 2212, and a controller patch 2230
and a bridge 2235 running in the kernel 2210. Also running
in the user space 2212 is a NAT daemon 2250, which will be
described further below. The user space 2212 and the kernel
2210, in some embodiments, are of an operating system for
the host 1990 while in other embodiments the user space
2212 and the kernel 2210 are of a virtual machine that is
running on the host 1990.

In some embodiments, the controller cluster 2205 com-
municates with a control daemon 2215 (e.g., by using
OpenFlow protocol or some other communication protocol),
which, in some embodiments, is an application running in
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the background of the user space 2212. The control daemon
2215 communicates with the controller cluster 2205 in order
to process and route packets that the managed switching
element 1910 receives. Specifically, the control daemon
2215, in some embodiments, receives configuration infor-
mation from the controller cluster 2205 and configures the
controller patch 2230. For example, the control daemon
2215 receives commands from the controller cluster 2205
regarding operations for processing and routing packets at
L2 and L3 that the managed switching element 1910
receives.

The controller patch 2230 is a module that runs in the
kernel 2210. In some embodiments, the control daemon
2215 configures the controller patch 2230. When configured,
the controller patch 2230 contains rules (e.g., flow entries)
regarding processing, forwarding, and routing the packets to
receive. The controller patch 2230 implements both logical
switches and a logical router.

In some embodiments, the controller patch 2230 uses the
NAT daemon for network address translation. As will be
described further below, the NAT daemon 2250 generates
flow entries regarding network address translation and sends
back the flow entries to the managed switching element
1910 to use. A NAT daemon will be described further below.

The controller patch 2230 receives packets from a net-
work stack 2250 of the kernel 2210 or from the bridge 2235.
The bridge 2235 routes network data between the network
stack 2250 and network hosts external to the host (i.e.,
network data received through the NIC 2245). As shown, the
bridge 2235 routes network data between the network stack
2250 and the NIC 2245 and between the network stack 2250
and the NIC 2245. The bridge 2235 of some embodiments
performs standard 1.2 packet learning and routing.

The network stack 2250 can receive packets from network
hosts external to the managed switching element 1910
through the NIC 2245. The network stack 2250 then sends
the packets to the controller patch 2230. In some cases, the
packets are received from network hosts external to the
managed switching element through tunnels. In some
embodiments, the tunnels terminate at the network stack
2250. Thus, when the network stack 2250 receives a packet
through a tunnel, the network stack 2250 unwraps the tunnel
header (i.e., decapsulates the payload) and sends the
unwrapped packet to the controller patch 2230.

An example operation of the managed switching element
1910 will now be described. In this example, tunnels are
established between the managed switching element 1910
and the managed switching elements 1915 and 1920 (not
shown in FIG. 22) that are external to the host 1990. That is,
the managed switching elements 1910, 1915, and 1920 are
connected through the tunnels as illustrated in FIG. 19. The
tunnels terminate at the network stack 2250.

The managed switching element 1915 sends a packet, sent
by VM1 to VM 4, to the managed switching element 1910.
The packet is received by the NIC 2245 and then is sent to
the bridge 2235. Based on the information in the packet
header, the bridge 2235 determines that the packet is sent
over the established tunnel and sends the packet to the
network stack 2250. The network stack 2250 unwraps the
tunnel header and sends the unwrapped packet to the con-
troller patch 2230.

According to the flow entries that the controller patch
2230 has, the controller patch 2230 performs L3 processing
to route the packet because the packet is sent from one
logical network to another logical network. By performing
the L3 processing and some L2 processing, the managed
switching element 1910 determines that the packet should be



US 9,461,960 B2

41

sent to the managed switching element 1920 because the
destination network layer address should go to a logical
switch that belongs to the destination logical network. The
controller patch 2230 sends the packet through the network
stack 2250, the bridge 2235, and the NIC 2245 over the
tunnel to the managed switching element 1920 that imple-
ments the logical switch that belongs to the destination
logical network.

FIG. 23 conceptually illustrates an example implementa-
tion of logical switches and logical routers in managed
switching elements. Specifically, this figure illustrates
implementation of the logical router 225 and the logical
switches 220 and 230 in the second-level managed switch-
ing element 1910 and the managed switching elements 1915
and 1920. The figure illustrates in the top half of the figure
the logical router 225 and the logical switches 220 and 230.
This figure illustrates in the bottom half of the figure the
managed switching elements 1910-1920. The figure illus-
trates VMs 1-4 in both the top and the bottom halves of the
figure.

The logical switches 220 and 230 and the logical router
225 are logically coupled through logical ports. This par-
ticular configuration of the logical switches 220 and 230 is
the same as the configuration illustrated in an example
described above by reference to FIG. 12.

In the example of FIG. 23, the controller cluster 2205 (not
shown in FIG. 23) configures the managed switching ele-
ment 1910 by supplying tlow entries to the managed switch-
ing element 1910 such that the managed switching element
implements the logical router 225 based on the flow entries.

FIG. 24 conceptually illustrates an example operation of
the logical switches 220 and 230, the logical router 225, and
the managed switching elements 1910, 1915 and 1920
described above by reference to FIG. 23. Specifically, FIG.
24 illustrates an operation of the managed switching element
1910, which implements the logical router 225. Portions of
the logical processing pipeline that the managed switching
elements 1915 and 1920 perform are not depicted in FIG. 24
for simplicity. These portions of the logical processing
pipeline are similar to the portions of logical processing
performed by the managed switching elements 815 and 820
in the example illustrated in the top half of FIG. 13A and
FIG. 13C. That is, for illustrating the example of FIG. 24,
FIG. 24 replaces the bottom half of FIG. 13A and FIG. 13B.

As shown in the bottom half of FIG. 24, the managed
switching element 1910 includes [.2 entries 2405 and 2415
and L3 entries 2410. These entries are flow entries that the
controller cluster 2205 (not shown) supplies to the managed
switching element 1910. Although these entries are depicted
as three separate tables, the tables do not necessarily have to
be separate tables. That is, a single table may include all
these flow entries.

When the managed switching element 1910 receives a
packet 2430 from the managed switching element 1915 that
is sent from VM 1 towards VM 4, the managed switching
element 1910 begins processing the packet 2430 based on
the flow entries 2405 of the managed switching element
1910. The managed switching element 1910 identifies a
record indicated by an encircled 1 (referred to as “record 17)
in the forwarding tables that implements the context map-
ping of the stage 1830. The record 1 identifies the packet
2430’s logical context based on the logical context that is
stored in the packet 2430°s header. The logical context
specifies that the packet 2430 has been processed by the
portion of logical processing (i.e., .2 ingress ACL, 1.2
forwarding) performed by the managed switching element
1915. As such, the record 1 specifies that the packet 2430 be
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further processed by the forwarding tables (e.g., by sending
the packet 2430 to a dispatch port).

Next, the managed switching element 1910 identifies,
based on the logical context and/or other fields stored in the
packet 2430’s header, a record indicated by an encircled 2
(referred to as “record 2”) in the forwarding tables that
implements the egress ACL of the stage 1835. In this
example, the record 2 allows the packet 2430 to be further
processed (e.g., the packet 2430 can get out of the logical
switch 220 through port “X” of the logical switch 220) and,
thus, specifies the packet 2430 be further processed by the
flow entries of the managed switching element 1910 (e.g., by
sending the packet 2430 to a dispatch port). In addition, the
record 2 specifies that the managed switching element 1910
store the logical context (i.e., the packet 2430 has been
processed by the stage 2452 of the processing pipeline 2400)
of the packet 2430 in the set of fields of the packet 2430°s
header. (It is to be noted that all records specify that a
managed switching element performing logical processing
update the logical context store in the set of fields whenever
a managed switching element performs some portion of
logical processing based on a record.)

The managed switching element 1910 continues process-
ing the packet 2430 based on the flow entries. The managed
switching element 1910 identifies, based on the logical
context and/or other fields stored in the packet 2430°s
header, a record indicated by an encircled 3 (referred to as
“record 3”) in the L3 entries 2410 that implements [.3
ingress ACL by specifying that the managed switching
element 1910 should accept the packet through the logical
port 1 of the logical router 225 based on the information in
the header of the packet 2430.

The managed switching element 1910 then identifies a
flow entry indicated by an encircled 4 (referred to as “record
4”) in the L3 entries 2410 that implements [.3 routing 1845
by specifying that the packet 2430 with its destination IP
address (e.g., 1.1.2.10) should be allowed to exit out of port
2 of the logical router 225. Also, the record 4 (or another
record in the routing table, not shown) indicates that the
source MAC address for the packet 2430 is to be rewritten
to the MAC address of port 2 of the logical router 225 (i.e.,
01:01:01:01:01:02). The managed switching element 1910
then identifies a flow entry indicated by an encircled 5
(referred to as “record 5”) in the L3 entries 2410 that
implements [.3 egress ACL by specifying that the managed
switching element 1910 can send the packet out through port
2 of the logical router 225 based on the information (e.g.,
source [P address) in the header of the packet 2430.

Based on the logical context and/or other fields stored in
the packet 2430°s header, the managed switching element
1910 identifies a record indicated by an encircled 6 (referred
to as “record 6”) in the [.2 entries 2415 that implements the
ingress ACL of the stage 1860. In this example, the record
6 allows the packet 2430 to be further processed and, thus,
specifies the packet 2430 be further processed by the man-
aged switching element 1910 (e.g., by sending the packet
2430 to a dispatch port). In addition, the record 6 specifies
that the managed switching element 1910 store the logical
context (i.e., the packet 2430 has been processed by the
stage 2462 of the processing pipeline 2400) of the packet
2430 in the set of fields of the packet 2430°s header.

Next, the managed switching element 1910 identifies,
based on the logical context and/or other fields stored in the
packet 2430’s header, a record indicated by an encircled 7
(referred to as “record 7”) in the forwarding tables that
implements the logical .2 forwarding of the stage 1865. The
record 7 specifies that a packet with the MAC address of VM
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4 as destination MAC address should be forwarded through
a logical port (not shown) of the logical switch 230 that is
connected to VM 4.

The record 7 also specifies that the packet 2430 be further
processed by the forwarding tables (e.g., by sending the
packet 2430 to a dispatch port). Also, the record 7 specifies
that the managed switching element 1910 store the logical
context (i.e., the packet 2430 has been processed by the
stage 1865 of the processing pipeline 2400) in the set of
fields of the packet 2430’s header.

Based on the logical context and/or other fields stored in
the packet 2430°s header, the managed switching element
1910 identifies a record indicated by an encircled 8 (referred
to as “record 8”) in the forwarding tables that implements
the context mapping of the stage 1870. In this example, the
record 8 identifies port 5 of the managed switching element
1920 to which VM 4 is coupled as the port that corresponds
to the logical port (determined at stage 1865) of the logical
switch 230 to which the packet 2430 is to be forwarded. The
record 8 additionally specifies that the packet 2430 be
further processed by the forwarding tables (e.g., by sending
the packet 2430 to a dispatch port).

Based on the logical context and/or other fields stored in
the packet 2430°s header, the managed switching element
1910 then identifies a record indicated by an encircled 9
(referred to as “record 9”) in the L2 entries 2415 that
implements the physical mapping of the stage 1875. The
record 9 specifies a port (not shown) of the managed
switching element 1910 through which the packet 2430 is to
be sent in order for the packet 2430 to reach the managed
switching element 1920. In this case, the managed switching
element 1910 is to send the packet 2430 out of that port of
managed switching element 1910 that is coupled to the
managed switching element 1920.

FIGS. 25-30B illustrate a distributed logical router imple-
mented in several managed switching elements based on
flow entries of the managed switching element. In particular,
FIGS. 25-30B illustrate that the entire logical processing
pipeline that includes source L2 processing, [.3 routing, and
destination 1.2 processing is performed by a first hop man-
aged switching element (i.e., the switching element that
receives a packet directly from a machine).

FIG. 25 conceptually illustrates an example implementa-
tion of the logical processing pipeline 200 described above
by reference to FIG. 2. In particular, FIG. 25 illustrates that
the L3 processing 210 can be performed by any managed
switching elements that directly receives a packet from a
source machine. FIG. 25 illustrates a network architecture
2500. In the network architecture 2500, the logical process-
ing pipeline 200 is performed by a managed switching
element 2505. In this example, the L3 processing 210 is
performed by the managed switching element 2505 based on
flow entries of the managed switching element 2505. FIG.
25 also illustrates source machine 2515 and destination
machine 2520.

The managed switching element 2505 is an edge switch-
ing element that directly receives the packets from a
machine coupled to the edge switching element. The man-
aged switching element 2505 receives packets from the
source machine 2515. When the managed switching element
2505 receives a packet from the source machine 2515, the
managed switching element 805, in some embodiments,
performs the entire logical processing pipeline 200 on the
packet in order to logically forward and route the packet.

When a received packet is headed to the destination
machine 2520, which is in another logical network in this
example, the managed switching element 2505 functions as
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a logical switch that is in the logical network to which the
source machine 2515 belongs; a logical switch that is in the
logical network to which the destination machine 2520
belongs; and a logical router that routes packets between
these two logical switches. Based on the result of performing
logical processing pipeline 200, the managed switching
element 2505 forwards the packet to the managed switching
element 2510 through which the destination machine 2520
receives the packet.

FIG. 26 conceptually illustrates the logical processing
pipeline 200 of some embodiments for processing a packet
through the logical switch 220, the logical router 225, and
the logical switch 230. Specifically, this figure illustrates the
logical processing pipeline 200 when performed in the
network architecture 2500 described above by reference to
FIG. 25. As described above, in the network architecture
2500, the 1.2 processing 205, the [.3 processing 210, and the
L2 processing 215 are performed by the single managed
switching element 2505, which is an edge switching element
that receives packet from machine. Hence, in these embodi-
ments, the first-hop switching element performs the entire
logical processing pipeline 200.

The L2 processing 205, in some embodiments, includes
four stages 2605-2620 for processing a packet through the
logical switch 220 (not shown in FIG. 26). In the stage 2605,
ingress context mapping is performed on the packet to
determine the logical context of the packet. In some embodi-
ments, the stage 2605 is performed when the logical switch
220 receives the packet (e.g., the packet is initially received
by the managed switching element 2505).

In some embodiments, the second stage 2610 is defined
for the logical switch 220. In some such embodiments, the
stage 2610 operates on the packet’s logical context to
determine ingress access control of the packet with respect
to the logical switch. For example, an ingress ACL is applied
to the packet to control the packet’s access to the logical
switch when the logical switch receives the packet. Based on
the ingress ACL defined for the logical switch, the packet
may be further processed (e.g., by the stage 2615) or the
packet may be dropped, for example.

In the third stage 2615 of the L2 processing 205, an [.2
forwarding is performed on the packet in the context of the
logical switch. In some embodiments, the third stage 2615
operates on the packet’s logical context to process and
forward the packet with respect to the logical switch 220.
For instance, some embodiments define an [.2 forwarding
table or L2 forwarding entries for processing the packet at
layer 2.

The fourth stage 2620 of some embodiments is defined for
the logical switch 220. The fourth stage 2620 of some such
embodiments operates on the packet’s logical context to
determine egress access control of the packet with respect to
the logical switch. For instance, an egress ACL may be
applied to the packet to control the packet’s access out of the
logical switch 220 after logical forwarding has been per-
formed on the packet. Based on the egress ACL defined for
the logical switch, the packet may be further processed (e.g.,
sent out of a logical port of the logical switch or sent to a
dispatch port for further processing) or the packet may be
dropped, for example.

When the packet’s destination is in another logical net-
work (i.e., when the packet’s destination logical network is
different than the logical network whose traffic is processed
by the logical switch 220), the logical switch 220 sends the
packet to the logical router 225, which then performs the L3
processing at stage 210 in order to route the packet to the
destination logical network. The L3 processing 210 includes
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six stages 2635-2651 for processing a packet through the
logical router 225 (not shown in FIG. 26) that is imple-
mented by the managed switching element 2505 (not shown
in FIG. 26). As mentioned above, [.3 processing involves
performing a set of logical routing lookups for determining
where to route the packet through a layer 3 network.

The first stage 2635 performs a logical ingress ACL
lookup for determining access control when the logical
router 225 receives the packet (i.e., when the managed
switching element 2505 which implements the logical router
225 receives the packet). In some embodiments, the stage
2635 operates on the packet’s logical context to determine
ingress access control of the packet with respect to the
logical router 225. The next stage 2636 performs DNAT to
revert the destination address of the packet back to the real
address of the destination machine that is hidden from the
source machine of the packet. This stage 2636 is performed
when DNAT is enabled.

The next stage 2640 performs a logical L3 routing for
determining one or more logical ports to send the packet
through the layer 3 network based on the L3 addresses (e.g.,
destination IP address) of the packet, forwarding tables
containing [.3 flow entries, and the packet’s logical context.

The fourth stage 2645 of some embodiments performs
SNAT on the packet. For instance, the managed switching
element 2505 replaces the source IP address of the packet
with a different IP address in order to hide the source IP
address when the SNAT is enabled. Also, as will be
described further below, the managed switching element
may use a NAT daemon to receive flow entries for translat-
ing network addresses. A NAT daemon will be described
further below by reference to FIG. 31.

The fifth stage 2650 performs logical egress ACL lookups
for determining access control before the logical router 225
routes the packet out of the logical router 225 through the
port determined in the stage 2640. The egress ACL lookups
are performed based on the L3 addresses (e.g., source and
destination IP addresses) of the packet. In some embodi-
ments, the stage 2650 operates on the packet’s logical
context to determine egress access control of the packet with
respect to the logical router 225.

The sixth stage 2651 performs address resolution in order
to translate the destination .3 address (e.g., a destination IP
address) into a destination [.2 address (e.g., a destination
MAC address). In some embodiments, the managed switch-
ing element 2505 uses a standard address resolution (e.g., by
sending out ARP requests or looking up ARP cache) to find
the destination [.2 address that corresponds to the destina-
tion IP address. Also, as will be described further below, the
managed switching element 2505 of some embodiments
may use an [.3 daemon to receive flow entries for resolving
L3 addresses into L2 addresses. An L3 daemon will be
described further below by reference to FIGS. 48-50.

When the logical router 225 is not coupled to the desti-
nation logical network, the logical switch 220 sends the
packet to another logical router network towards the desti-
nation logical network. A portion of the logical processing
that corresponds to the operation of the other logical router
would also be implemented in the managed switching ele-
ment 2505. When the logical router 225 is coupled to the
destination logical network, the logical switch 220 routes the
packet to the destination logical network (i.e., the logical
switch that forwards the packet for the destination logical
network).

The 1.2 processing 215, in some embodiments, includes
five stages 2660-2680 for processing the packet through the
logical switch 225 (not shown in FIG. 26). In some embodi-
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ments, the first stage 2660 is defined for the logical switch
225. In some such embodiments, the stage 2660 operates on
the packet’s logical context to determine ingress access
control of the packet with respect to the logical switch 230.
For example, an ingress ACL is applied to the packet to
control the packet’s access to the logical switch 230 when
the logical switch 230 receives the packet from the logical
router 225. Based on the ingress ACL defined for the logical
switch, the packet may be further processed (e.g., by the
stage 2665) or the packet may be dropped, for example.

In the second stage 2665 of the [.2 processing pipeline
215, an L2 forwarding is performed on the packet in the
context of the logical switch. In some embodiments, the
third stage 2665 operates on the packet’s logical context to
process and forward the packet with respect to the logical
switch 220. For instance, some embodiments define an L2
forwarding table or [.2 forwarding entries for processing the
packet at layer 2.

The third stage 2670 of some embodiments is defined for
the logical switch 220. The third stage 2670 of some such
embodiments operates on the packet’s logical context to
determine egress access control of the packet with respect to
the logical switch. For instance, an egress ACL may be
applied to the packet to control the packet’s access out of the
logical switch 230 after logical forwarding has been per-
formed on the packet. Based on the egress ACL defined for
the logical switch, the packet may be further processed (e.g.,
sent out of a logical port of the logical switch or sent to a
dispatch port for further processing) or the packet may be
dropped, for example.

In the fourth stage 2675, egress context mapping is
performed to identify a physical result that corresponds to
the result of the logical forwarding of the packet. For
example, the logical processing of the packet may specify
that the packet is to be sent out of one or more logical ports
(e.g., a logical egress port) of the logical switch 230. As
such, the egress context mapping operation identifies a
physical port(s) of one or more of the managed switching
elements (including the managed switching element 2505)
that corresponds to the particular logical port of the logical
switch.

The fifth stage 2680 of the 1.2 processing 215 performs a
physical mapping based on the egress context mapping
performed at the fourth stage 2675. In some embodiments,
the physical mapping determines operations for forwarding
the packet to the physical port that was determined in the
fourth stage 2675. For example, the physical mapping of
some embodiments determines one or more queues (not
shown) associated with one or more ports of the set of ports
(not shown) of the managed switching element 2505 through
which to send the packet in order for the packet to reach the
physical port(s) determined in the fourth stage 2675. This
way, the managed switching elements can route the packet
along the correct path in the network for the packet to reach
the determined physical port(s). Also, some embodiments
remove the logical context after the fifth stage 2680 is
completed in order to return the packet to its original state
before the logical processing pipeline 2600 was performed
on the packet.

FIG. 27 conceptually illustrates an example network
architecture 2700 of some embodiments which implements
the logical router 225 and logical switches 220 and 230.
Specifically, the network architecture 2700 represents a
physical network that effectuate logical networks whose data
packets are switched and/or routed by the logical router 225
and the logical switches 220 and 230. The figure illustrates
in the top half of the figure the logical router 225 and the
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logical switches 220 and 230. This figure illustrates, in the
bottom half of the figure, the managed switching elements
2505 and 2510. The figure illustrates VMs 1-4 in both the
top and the bottom of the figure.

In this example, the logical switch 220 forwards data
packets between the logical router 225, VM 1, and VM 2.
The logical switch 230 forwards data packets between the
logical router 225, VM 3, and VM 4. As mentioned above,
the logical router 225 routes data packets between the
logical switches 220 and 230 and other logical routers and
switches (not shown). The logical switches 220 and 230 and
the logical router 225 are logically coupled through logical
ports (not shown) and exchange data packets through the
logical ports. These logical ports are mapped or attached to
physical ports of the managed switching elements 2505 and
2510.

In some embodiments, a logical router is implemented in
each managed switching element in the managed network.
When the managed switching element receives a packet
from a machine that is coupled to the managed switching
element, the managed switching element performs the logi-
cal routing. In other words, a managed switching element of
these embodiments that is a first-hop switching element with
respect to a packet performs the L3 processing 210.

In this example, the managed switching elements 2505
and 2510 are software switching elements running in hosts
2525 and 2530, respectively. The managed switching ele-
ments 2505 and 2510 have flow entries which implement the
logical switches 220 and 230 to forward and route the
packets that the managed switching element 2505 and 2510
receive from VMs 1-4. The flow entries also implement the
logical router 225. Using these flow entries, the managed
switching elements 2505 and 2510 can forward and route
packets between network elements in the network that are
coupled to the managed switching elements 2505 and 2510.
As shown, the managed switching elements 2505 and 2510
each have three ports (e.g., VIFs) through which to exchange
data packets with the network elements that are coupled to
the managed switching elements 2505 and 2510. In some
cases, the data packets in these embodiments will travel
through a tunnel that is established between the managed
switching elements 2505 and 2510 (e.g., the tunnel that
terminates at port 3 of the managed switching element 2505
and port 3 of the managed switching element 2510).

In this example, each of the hosts 2525 and 2530 includes
a managed switching element and several VMs as shown.
The VMs 1-4 are virtual machines that are each assigned a
set of network addresses (e.g., a MAC address for .2, an [P
address for network L3, etc.) and can send and receive
network data to and from other network elements. The VMs
are managed by hypervisors (not shown) running on the
hosts 2525 and 2530.

Several example data exchanges through the network
architecture 2700 will now be described. When VM 1, that
is coupled to the logical switch 220, sends a packet to VM
2 that is also coupled to the same logical switch 220, the
packet is first sent to the managed switching element 2505.
The managed switching element 2505 then performs the [.2
processing 205 on the packet. The result of L2 processing
would indicate that the packet should be sent to the managed
switching element 2510 over the tunnel established between
the managed switching elements 2505 and 2510 and get to
VM 2 through port 4 of the managed switching element
2510. Because VMs 1 and 2 are in the same logical network,
the managed switching element 2505 does not perform the
L3 processing 210 and the L2 processing 215.
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When VM 1 that is coupled to the logical switch 220
sends a packet to VM 3 that is coupled to the logical switch
230, the packet is first sent to the managed switching
element 2505. The managed switching element 2505 per-
forms the L2 processing 205 on the packet. However,
because the packet is sent from one logical network to
another (i.e., the logical L3 destination address of the packet
is for another logical network), the L3 processing 210 needs
to be performed. The managed switching element 2505 also
performs the L2 processing 215. That is, the managed
switching element 2505 as the first-hop switching element
that receives the packet performs the entire logical process-
ing pipeline 200 on the packet. The result of performing the
logical processing pipeline 200 would indicate that the
packet should be sent to VM 3 through port 5 of the managed
switching element 2505. Thus, the packet did not have to go
to another managed switching element although the packet
did go through two logical switches and a logical router.

When VM 1 that is coupled to the logical switch 220
sends a packet to VM 4 that is coupled to the logical switch
230, the packet is first sent to the managed switching
element 2505. The managed switching element 2505, as the
first-hop switching element for the packet, performs the
entire logical processing pipeline 200 on the packet. The
result of performing the logical processing pipeline 200 on
this packet would indicate that the packet should be sent to
the managed switching element 2510 over the tunnel estab-
lished between the managed switching elements 2505 and
2510 and get to VM 4 through port 5 of the managed
switching element 2510.

FIG. 28 conceptually illustrates an example network
architecture 2800 of some embodiments which implements
the logical router 225 and logical switches 220 and 230.
Specifically, the network architecture 2800 represents a
physical network that effectuate logical networks whose data
packets are switched and/or routed by the logical router 225
and the logical switches 220 and 230. The figure illustrates
in the top half of the figure the logical router 225 and the
logical switches 220 and 230. This figure illustrates in the
bottom half of the figure the managed switching elements
2505 and 2510. The figure illustrates VMs 1-4 in both the
top and the bottom of the figure.

The network architecture 2800 is similar to the network
architecture 2700 except that the network architecture 2800
additionally includes the managed switching element 2805.
The managed switching element 2805 of some embodiments
is a second-level managed switching element that functions
as a pool node.

In some embodiments, tunnels are established by the
network control system (not shown) to facilitate communi-
cation between the network elements. For instance, the
managed switching element 2505 in this example is coupled
to the managed switching element 2805, which runs in the
host 2810, through a tunnel that terminates at port 1 of the
managed switching element 2505 as shown. Similarly, the
managed switching element 2510 is coupled to the managed
switching element 2805 through a tunnel that terminates at
port 2 of the managed switching elements 2510. In contrast
to the example architecture 2700 illustrated in FIG. 27
above, no tunnel is established between the managed switch-
ing elements 2505 and 2510.

The logical router 225 and the logical switches 220 and
230 are implemented in the managed switching element
2505 and the second-level managed switching element 2805
is involved in the data packet exchange. That is, the man-
aged switching elements 2505 and 2510 exchange packets
through the managed switching element 2805.
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FIG. 29 conceptually illustrates an example of a first-hop
switching element that performs all of [.2 and .3 processing
on a received packet to forward and route. FIG. 29 illustrates
implementation of the logical router 225 and the logical
switches 220 and 230 by the managed switching elements
2505 and 2510. As shown, the entire logical processing
pipeline 200 is performed by the managed switching ele-
ment 2505 when the managed switching element 2505 is a
first-hop switching element. The figure illustrates in the left
half of the figure the logical router 225 and the logical
switches 220 and 230. This figure illustrates in the right half
of the figure the managed switching elements 2505 and
2510. The figure illustrates VMs 1-4 in both the right and the
left halves of the figure.

When VM 1 that is coupled to the logical switch 220
sends a packet to VM 2 that is also coupled to the same
logical switch 220, the packet is first sent to the managed
switching element 2505 through port 4 of the managed
switching element 2505 because a logical port 1 of the
logical switch 220 through which the packet goes into the
logical switch 220 is attached or mapped to port 4 of the
managed switching element 2505.

The managed switching element 2505 then performs the
L2 processing 205 on the packet. Specifically, the managed
switching element 2505 first performs a logical context look
up to determine the logical context of the packet based on
the information included in the header fields of the packet.
In this example, the source MAC address of the packet is a
MAC address of VM 1 and the source IP address of the
packet is an IP address of VM 1. The destination MAC
address of the packet is a MAC address of VM 2 and
destination IP address of the packet is an IP address of VM
2. In this example, the logical context specifies that logical
switch 220 is the logical switch that is to forward the packet
and that logical port 1 of the logical switch 220 is the port
through which the packet was received. The logical context
also specifies that port 2 of the logical switch 220 is the port
through which to send the packet out to VM 2 because port
2 is associated with the MAC address of VM 2.

The managed switching element 2505 then performs
logical forwarding lookups based on the determined logical
context of the packet. The managed switching element 2505
determines access control for the packet. For instance, the
managed switching element 2505 determines that the packet
does not have network addresses (e.g., source/destination
MAC/IP addresses, etc.) that will cause the logical switch
220 to reject the packet that came through port 1 of the
logical switch 220. The managed switching element 2505
also identifies from the logical context that port 2 of the
logical switch 220 is the port to send out the packet.
Furthermore, the managed switching element 2505 deter-
mines access control for the packet with respect to port 2 of
the logical switch 220. For instance, the managed switching
element 2505 determines that the packet does not have
network addresses that will cause the logical switch 220 not
to send the packet through the port 2 of the logical switch
220.

The managed switching element 2505 then performs a
mapping lookup to determine a physical port to which the
logical port 2 of the logical switch 220 is mapped. In this
example, the managed switching element 2505 determines
that logical port 2 of the logical switch 220 is mapped to port
4 of the managed switching element 2510. The managed
switching element 2505 then performs a physical lookup to
determine operations for forwarding the packet to the physi-
cal port. In this example, the managed switching element
2505 determines that the packet should be sent to the
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managed switching element 2510 over the tunnel established
between the managed switching elements 2505 and 2510
and get to VM 2 through port 4 of the managed switching
element 2510. Because VMs 1 and 2 are in the same logical
network, the managed switching element 2505 does not
perform an L3 processing. The managed switching element
2510 does not perform any logical processing on the packet
but just forwards the packet to VM 2 through port 4 of the
managed switching element 2510.

When VM 1 that is coupled to the logical switch 220
sends a packet to VM 3 that is coupled to the logical switch
230 (i.e., when VMs 1 and 3 are in different logical net-
works), the packet is first sent to the managed switching
element 2505 through port 4 of the managed switching
element 2505. The managed switching element 2505 per-
forms the 1.2 processing 205 on the packet. Specifically, the
managed switching element 2505 first performs a logical
context look up to determine the logical context of the
packet based on the information included in the header fields
of the packet. In this example, the source MAC address of
the packet is a MAC address of VM 1 and the source IP
address of the packet is an IP address of VM 1. Because the
packet is sent from VM 1 to VM 3 that is in a different
logical network, the packet has a MAC address associated
with port X as the destination MAC address (i.e., 01:01:01:
01:01:01 in this example). The destination IP address of the
packet is an IP address of VM 3 (e.g., 1.1.2.10). In this
example, the logical context specifies that logical switch 220
is the logical switch that is to forward the packet and that
logical port 1 of the logical switch 220 is the port through
which the packet was received. The logical context also
specifies that port X of the logical switch 220 is the port
through which to send the packet out to the logical router
225 because port X is associated with the MAC address of
port 1 of the logical router 225.

The managed switching element 2505 then determines
access control for the packet. For instance, the managed
switching element 2505 determines that the packet does not
have network addresses (e.g., source/destination MAC/IP
addresses, etc.) that will cause the logical switch 220 to
reject the packet that came through port 1 of the logical
switch 220. The managed switching element 2505 also
identifies from the logical context that port X of the logical
switch 220 is the port to send out the packet. Furthermore,
the managed switching element 2505 determines access
control for the packet with respect to port X. For instance,
the managed switching element 2505 determines that the
packet does not have network addresses that will cause the
logical switch 220 not to send the packet through the port X.

The managed switching element 2505 then performs the
L3 processing 210 on the packet because the packet’s
destination IP address, 1.1.2.10, is for another logical net-
work (i.e., when the packet’s destination logical network is
different than the logical network whose traffic is processed
by the logical switch 220). The managed switching element
2505 determines access control for the packet at L3. For
instance, the managed switching element 2505 determines
that the packet does not have network addresses that will
cause the logical router 225 to reject the packet that came
through logical port 1 of the logical router 225. The managed
switching element 2505 also looks up the [.3 flow entries
and determines that the packet is to be sent to the logical port
2 of the logical router 225 because the destination IP address
of the packet, 1.1.2.10, belongs to the subnet address of
1.1.2.1/24 that is associated with the logical port 2 of the
logical router 225. Furthermore, the managed switching
element 2505 determines access control for the packet with
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respect to the logical port 2 of the logical router 225. For
instance, the managed switching element 2505 determines
that the packet does not have network addresses that will
cause the logical switch 220 not to send the packet through
the logical port 2.

The managed switching element 2505 modifies the logical
context of the packet or the packet itself while performing
the L3 processing 210. For instance, the managed switching
element 2505 modifies the logical source MAC address of
the packet to be the MAC address of the logical port 2 of the
logical router 225 (i.e., 01:01:01:01:01:02 in this example).
The managed switching element 2505 also modifies the
destination MAC address of the packet to be a MAC address
of VM 3.

The managed switching element 2505 then performs the
L2 processing 215. Specifically, the managed switching
element 2505 determines access control for the packet. For
instance, the managed switching element 2505 determines
that the packet does not have network addresses (e.g.,
source/destination MAC/IP addresses, etc.) that will cause
the logical switch 230 to reject the packet that came through
port Y of the logical switch 230. The managed switching
element 2505 then determines that port 1 of the logical
switch 230 is the port through which to send the packet out
to the destination, VM 3. Furthermore, the managed switch-
ing element 2505 determines access control for the packet
with respect to port 1 of the logical switch 230. For instance,
the managed switching element 2505 determines that the
packet does not have network addresses that will cause the
logical switch 230 not to send the packet through the port 1
of the logical switch 230.

The managed switching element 2505 then performs a
mapping lookup to determine a physical port to which the
logical port 1 of the logical switch 230 is mapped. In this
example, the managed switching element 2505 determines
that logical port 1 of the logical switch 230 is mapped to port
5 of the managed switching element 2505. The managed
switching element 2505 then performs a physical lookup to
determine operations for forwarding the packet to the physi-
cal port. In this example, the managed switching element
2505 determines that the packet should be sent to VM 3
through port 5 of the managed switching element 2505. The
managed switching element 2505 in this example removes
the logical context from the packet before sending out the
packet to VM 3. Thus, the packet did not have to go to
another managed switching element although the packet did
go through two logical switches and a logical router.

When VM 1 that is coupled to the logical switch 220
sends a packet to VM 4 that is coupled to the logical switch
230, the packet is sent to VM 4 in a similar manner in which
the packet sent from VM 1 to VM 3 is sent to VM 3, except
that the packet heading to VM 4 is sent from the managed
switching element 2505 to the managed switching element
2510 over the tunnel established between the managed
switching elements 2505 and 2510 and gets to VM 4 through
port 5 of the managed switching element 2510.

FIGS. 30A-30B conceptually illustrate an example opera-
tion of the logical switches 220 and 230, the logical router
225, and the managed switching elements 2505 and 2510
described above by reference to FIG. 29. Specifically, FIG.
30A illustrates an operation of the managed switching
element 2505, which implements the logical switches 220
and 230 and logical router 225. FIG. 30B illustrates an
operation of the managed switching element 2505.

As shown in the bottom half of FIG. 30A, the managed
switching element 2505 includes [.2 entries 3005 and 3015
and L3 entries 3010. These entries are flow entries that a

10

15

20

25

30

35

40

45

50

55

60

65

52

controller cluster (not shown) supplies to the managed
switching element 2505. Although these entries are depicted
as three separate tables, the tables do not necessarily have to
be separate tables. That is, a single table may include all
these flow entries.

When VM 1 that is coupled to the logical switch 220
sends a packet 3030 to VM 4 that is coupled to the logical
switch 230, the packet is first sent to the managed switching
element 2505 through port 4 of the managed switching
element 2505. The managed switching element 2505 per-
forms an 1.2 processing on the packet based on the forward-
ing tables 3005-3015 of the managed switching element
2505. In this example, the packet 3030 has a destination IP
address of 1.1.2.10, which is the IP address of VM 4. The
packet 3030°s source IP address is 1.1.1.10. The packet 3030
also has VM 1’s MAC address as a source MAC address and
the MAC address of the logical port 1 (e.g., 01:01:01:01:
01:01) of the logical router 225 as a destination MAC
address.

The managed switching element 2505 identifies a record
indicated by an encircled 1 (referred to as “record 1”) in the
forwarding tables that implements the context mapping of
the stage 2605. The record 1 identifies the packet 3030°s
logical context based on the inport, which is the port 4
through which the packet 3030 is received from VM 1. In
addition, the record 1 specifies that the managed switching
element 2505 store the logical context of the packet 3030 in
a set of fields (e.g., a VLAN id field) of the packet 3030°s
header. The record 1 also specifies the packet 3030 be further
processed by the forwarding tables (e.g., by sending the
packet 3030 to a dispatch port). A dispatch port is described
in U.S. patent application Ser. No. 13/177,535.

Based on the logical context and/or other fields stored in
the packet 3030°s header, the managed switching element
2505 identifies a record indicated by an encircled 2 (referred
to as “record 2”) in the forwarding tables that implements
the ingress ACL of the stage 2610. In this example, the
record 2 allows the packet 3030 to be further processed (i.e.,
the packet 3030 can get through the ingress port of the
logical switch 220) and, thus, specifies the packet 3030 be
further processed by the forwarding tables (e.g., by sending
the packet 3030 to a dispatch port). In addition, the record
2 specifies that the managed switching element 2505 store
the logical context (i.e., the packet 3030 has been processed
by the second stage 3042 of the processing pipeline 3000) of
the packet 3030 in the set of fields of the packet 3030’s
header.

Next, the managed switching element 2505 identifies,
based on the logical context and/or other fields stored in the
packet 3030’s header, a record indicated by an encircled 3
(referred to as “record 3”) in the forwarding tables that
implements the logical .2 forwarding of the stage 2615. The
record 3 specifies that a packet with the MAC address of the
logical port 1 of the logical router 225 as a destination MAC
address is to be sent to the logical port X of the logical
switch 220.

The record 3 also specifies that the packet 3030 be further
processed by the forwarding tables (e.g., by sending the
packet 3030 to a dispatch port). Also, the record 3 specifies
that the managed switching element 2505 store the logical
context (i.e., the packet 3030 has been processed by the third
stage 2615 of the processing pipeline 3000) in the set of
fields of the packet 3030’s header.

Next, the managed switching element 2505 identifies,
based on the logical context and/or other fields stored in the
packet 3030’s header, a record indicated by an encircled 4
(referred to as “record 4”) in the forwarding tables that
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implements the egress ACL of the stage 2620. In this
example, the record 4 allows the packet 3030 to be further
processed (e.g., the packet 3030 can get out of the logical
switch 220 through port “X” of the logical switch 220) and,
thus, specifies the packet 3030 be further processed by the
flow entries of the managed switching element 2505 (e.g., by
sending the packet 3030 to a dispatch port). In addition, the
record 4 specifies that the managed switching element 2505
store the logical context (i.e., the packet 3030 has been
processed by the stage 2620 of the processing pipeline 3000)
of the packet 3030 in the set of fields of the packet 3030°s
header. (It is to be noted that all records specify that a
managed switching element update the logical context store
in the set of fields whenever the managed switching element
performs some portion of logical processing based on a
record.)

The managed switching element 2505 continues process-
ing the packet 3030 based on the flow entries. The managed
switching element 2505 identifies, based on the logical
context and/or other fields stored in the packet 3030’s
header, a record indicated by an encircled 5 (referred to as
“record 5”) in the L3 entries 3010 that implements [.3
ingress ACL by specifying that the managed switching
element 2505 should accept the packet through the logical
port 1 of the logical router 225 based on the information in
the header of the packet 3030.

The managed switching element 2505 then identifies a
flow entry indicated by an encircled 6 (referred to as “record
6”) in the L3 entries 3010 that implements .3 routing 2640
by specifying that the packet 3030 with its destination IP
address (e.g., 1.1.2.10) should exit out of port 2 of the logical
router 225. Also, the record 6 (or another record in the
routing table, not shown) indicates that the source MAC
address for the packet 3030 is to be rewritten to the MAC
address of port 2 of the logical router 225 (i.e., 01:01:01:
01:01:02).

The managed switching element 2505 then identifies a
flow entry indicated by an encircled 7 (referred to as “record
7”) in the L3 entries 3010 that implements 1.3 egress ACL
by specifying that the managed switching element 2505
allow the packet to exit out through port 2 of the logical
router 225 based on the information (e.g., source IP address)
in the header of the packet 3030.

Based on the logical context and/or other fields stored in
the packet 3030°s header, the managed switching element
2505 identifies a record indicated by an encircled 8 (referred
to as “record 8”) in the .2 entries 3015 that implements the
ingress ACL of the stage 2660. In this example, the record
8 specifies the packet 3030 be further processed by the
managed switching element 2505 (e.g., by sending the
packet 3030 to a dispatch port). In addition, the record 8
specifies that the managed switching element 2505 store the
logical context (i.e., the packet 3030 has been processed by
the stage 2660 of the processing pipeline 3000) of the packet
3030 in the set of fields of the packet 3030°s header.

Next, the managed switching element 2505 identifies,
based on the logical context and/or other fields stored in the
packet 3030’s header, a record indicated by an encircled 9
(referred to as “record 9”) in the L2 entries 3015 that
implements the logical L2 forwarding of the stage 2665. The
record 9 specifies that a packet with the MAC address of VM
4 as the destination MAC address should be forwarded
through a logical port (not shown) of the logical switch 230
that is connected to VM 4.

The record 9 also specifies that the packet 3030 be further
processed by the forwarding tables (e.g., by sending the
packet 3030 to a dispatch port). Also, the record 9 specifies
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that the managed switching element 2505 store the logical
context (i.e., the packet 3030 has been processed by the
stage 2665 of the processing pipeline 3000) in the set of
fields of the packet 3030’s header.

Next, the managed switching element 2505 identifies,
based on the logical context and/or other fields stored in the
packet 3030°s header, a record indicated by an encircled 10
(referred to as “record 10”) in the forwarding tables that
implements the egress ACL of the stage 2670. In this
example, the record 10 allows the packet 3030 to exit
through a logical port (not shown) that connects to VM 4
and, thus, specifies the packet 3030 be further processed by
the forwarding tables (e.g., by sending the packet 3030 to a
dispatch port). In addition, the record 10 specifies that the
managed switching element 2505 store the logical context
(i.e., the packet 3030 has been processed by the stage 2670
of'the processing pipeline 3000) of the packet 3030 in the set
of fields of the packet 3030’s header.

Based on the logical context and/or other fields stored in
the packet 3030°s header, the managed switching element
2505 identifies a record indicated by an encircled 11 (re-
ferred to as “record 117) in the [.2 entries 3015 that imple-
ments the context mapping of the stage 2675. In this
example, the record 11 identifies port 5 of the managed
switching element 2510 to which VM 4 is coupled as the
port that corresponds to the logical port (determined at stage
2665) of the logical switch 230 to which the packet 3030 is
to be forwarded. The record 11 additionally specifies that the
packet 3030 be further processed by the forwarding tables
(e.g., by sending the packet 3030 to a dispatch port).

Based on the logical context and/or other fields stored in
the packet 3030°s header, the managed switching element
2505 then identifies a record indicated by an encircled 12
(referred to as “record 12”) in the L2 entries 3015 that
implements the physical mapping of the stage 2680. The
record 12 specifies port 3 of the managed switching element
2505 as a port through which the packet 3030 is to be sent
in order for the packet 3030 to reach the managed switching
element 2510. In this case, the managed switching element
2505 is to send the packet 3030 out of port 3 of managed
switching element 2505 that is coupled to the managed
switching element 2510.

As shown in FIG. 30B, the managed switching element
2510 includes a forwarding table that includes rules (e.g.,
flow entries) for processing and routing the packet 3030.
When the managed switching element 2510 receives the
packet 3030 from the managed switching element 2505, the
managed switching element 2510 begins processing the
packet 3030 based on the forwarding tables of the managed
switching element 2510. The managed switching element
2510 identifies a record indicated by an encircled 1 (referred
to as “record 1) in the forwarding tables that implements
the context mapping. The record 1 identifies the packet
3030’s logical context based on the logical context that is
stored in the packet 3030°s header. The logical context
specifies that the packet 3030 has been processed by the
entire logical processing 200, which were performed by the
managed switching element 2505. As such, the record 4
specifies that the packet 3030 be further processed by the
forwarding tables (e.g., by sending the packet 3030 to a
dispatch port).

Next, the managed switching element 2510 identifies,
based on the logical context and/or other fields stored in the
packet 3030’s header, a record indicated by an encircled 2
(referred to as “record 2”) in the forwarding tables that
implements the physical mapping. The record 2 specifies the
port 5 of the managed switching element 2510 through
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which the packet 3030 is to be sent in order for the packet
3030 to reach VM 4. In this case, the managed switching
element 2510 is to send the packet 3030 out of port 5 of
managed switching element 2510 that is coupled to VM 4.
In some embodiments, the managed switching element 2510
removes the logical context from the packet 3030 before
sending the packet to VM 4.

FIG. 31 conceptually illustrates an example software
architecture of a host on which a managed switching ele-
ment runs. Specifically, this figure illustrates that the man-
aged switching element that runs a logical processing pipe-
line to logically forward and route packets uses a NAT
daemon for translating network addresses. This figure illus-
trates a host 3100, a managed switching element 3105, a
forwarding table 3120, a NAT daemon 3110, and a NAT
table 3115 in the top half of the figure. This figure illustrates
flow entries 3125 and 3130.

The flow entries 3125 and 3130 are flow entries that each
has a qualifier and an action. The text illustrated as flow
entries 3125 and 3130 may not be the actual format. Rather,
the text is just a conceptual illustration of a qualifier and an
action pair. In some embodiments, flow entries have priori-
ties and a managed switching element takes the action of the
flow entry with the highest priority when qualifiers for more
than one flow entry are satisfied.

The host 3100, in some embodiments, is a machine
operated by an operating system (e.g., Windows™ and
Linux™) that is capable of running a set of software
applications. The managed switching element 3105 of some
embodiments is a software switching element (e.g., Open
vSwitch) that executes in the host 3100. As mentioned
above, a controller cluster (not shown) configures a man-
aged switching element by supplying flow entries that
specify the functionality of the managed switching element.
The managed switching element 3105 of some embodiments
does not itself generate flow entries.

The managed switching element 3105 of some embodi-
ments runs all or part of the logical processing pipeline 200
described above. In particular, the managed switching ele-
ment 3105 is a managed switching element (e.g., the man-
aged switching elements 1720 or 2505) that performs the [.3
processing 210 to route packets received from the machines
if necessary, based on flow entries in the forwarding table
3120. In some embodiments, the managed switching ele-
ment 3105 is an edge switching element that receives a
packet from a machine (not shown) that is coupled to the
managed switching element. In some such embodiments,
one or more virtual machines (not shown) are running in the
host 3100 and are coupled to the managed switching ele-
ments 3105. In other embodiments, the managed switching
element is a second-level managed switching element.

When the managed switching element 3105 is configured
to perform network address translation (NAT), the managed
switching element 3105 of some embodiments uses the NAT
daemon 3110 for performing NAT on packets. In some
embodiments, the managed switching element 3105 does
not maintain a lookup table for finding an address to which
to translate from a given address. Instead, the managed
switching element 3105 asks the NAT daemon 3110 for
addresses.

The NAT daemon 3110 of some embodiments is a soft-
ware application running on the host 3100. The NAT dae-
mon 3110 maintains the table 3115 which includes pairings
of addresses where each pair includes two addresses to be
translated into each other. When the managed switching
element 3105 asks for an address to which to translate from
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a given address, the NAT daemon looks up the table 3115 to
find the address into which the given address should be
translated.

The managed switching element 3105 and the NAT
daemon 3110 of different embodiments use different tech-
niques to ask for and supply addresses. For instance, the
managed switching element 3105 of some embodiments
sends a packet, which has an original address but does not
have a translated address, to the NAT daemon. The NAT
daemon 3110 of these embodiments translates the original
address into a translated address. The NAT daemon 3110
sends the packet back to the managed switching element
3105, which will perform logical forwarding and/or routing
to send the packet towards the destination machine. In some
embodiments, the managed switching element 3105 initially
sends metadata, along with the packet that contains an
original address to resolve, to the NAT daemon 3110. This
metadata includes information (e.g., register values, logical
pipeline state, etc.) that the managed switching element
3105 uses to resume performing the logical processing
pipeline when the managed switching element 3105 receives
the packet back from the NAT daemon 3110.

In other embodiments, the managed switching element
3105 of some embodiments requests addresses by sending a
flow template, which is a flow entry that does not have actual
values for the addresses, to the NAT daemon 3110. The NAT
daemon finds out the addresses to fill in the flow template by
looking up the table 3115. The NAT daemon 3110 then sends
the flow template that is filled in with actual addresses back
to the managed switching element 3110 by putting the
filled-in flow template into the forwarding table 3120. In
some embodiments, the NAT daemon assigns a priority
value to the filled-in flow template that is higher than the
priority value of the flow template that is not filled in.
Moreover, when the NAT daemon 3110 fails to find a
translated address, the NAT daemon would specify in the
flow template to drop the packet.

An example operation of the managed switching element
3105 and the NAT daemon 3110 will now be described in
terms of three different stages 1-3 (encircled 1-3). In this
example, the managed switching element 3105 is a managed
edge switching element that receives a packet to forward and
route from a machine (not shown). The managed switching
element 3105 receives a packet and performs the L3 pro-
cessing 210 based on the flow entries in the forwarding table
3120.

While performing the [.3 processing 210 on the packet,
the managed switching element 3105 (at stage 1) identifies
the flow entry 3125 and performs the action specified in the
flow entry 3125. As shown, the flow entry 3125 indicates
that a flow template having an IP address 1.1.1.10 to be
translated to X should be sent to the NAT daemon 3110. In
this example, the flow entry 3125 has a priority value of N,
which is a number in some embodiments.

At stage 2, the NAT daemon 3110 receives the flow
template and finds out that 1.1.1.10 is to be translated into
2.1.1.10 by looking up the NAT table 3115. The NAT
daemon fills out the flow template and inserts the filled-in
template (now the flow entry 3130) into the forwarding table
3120. In this example, the NAT daemon assigns a priority of
N+1 to the filled-in template.

At stage 3, the managed switching element 3110 uses the
flow entry 3130 to change the address for the packet. Also,
for the packets that the managed switching element 3105
subsequently processes, the managed switching element
3105 uses flow entry 3130 over the flow entry 3125 when a
packet has the source IP address of 1.1.1.10.
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In some embodiments, the NAT daemon 3110 and the
managed switching element run in a same virtual machine
that is running on the host 3100 or in different virtual
machines running on the host 3100. The NAT daemon 3110
and the managed switching element may also run in separate
hosts.

FIG. 32 conceptually illustrates a process 3200 that some
embodiments perform to translate network addresses. In
some embodiments, the process 3200 is performed by a
managed switching element that performs an [.3 processing
210 to route packets at L3 (e.g., the managed switching
elements 1720, 2505, or 3105). The process 3200, in some
embodiments, starts when the process receives a packet that
is to be logically routed at L3.

The process 3200 begins by determining (at 3205)
whether the packet needs network address translation
(NAT). In some embodiments, the process determines
whether the packet needs NAT based on flow entry. The flow
entry, of which the qualifier matches the information stored
in the packet’s header or logical context, specifies that the
packet needs NAT. As mentioned above, NAT could be
SNAT or DNAT. The flow entry would also specify which
NAT is to be performed on the packet.

When the process 3200 determines (at 3205) that the
packet does not need NAT, the process ends. Otherwise, the
process 3200 determines (at 3210) whether the process 3200
needs to request for an address into which to translate a
packet’s address (e.g., source IP address) from a NAT
daemon. In some embodiments, the process 3200 determines
whether the process needs to ask the NAT daemon based on
the flow entry. For instance, the flow entry may specify that
the address into which to translate the packet’s address
should be obtained by requesting for the address from the
NAT daemon. In some embodiments, the process determines
that the NAT daemon should provide the translated address
when the flow entry is a flow template that has an empty field
for the translated address or some other value in the field for
indicating the translated address should be obtained from the
NAT daemon.

When the process determines (at 3210) that the process
does not need to request for an address from the NAT
daemon, the process obtains (at 3220) the translated address
from the flow entry. For instance, the flow entry would
provide the translated address. The process then proceeds to
3225, which will be described further below. When the
process determines (at 3210) that the process needs to
request for an address from the NAT daemon, the process
3200 at 3215 requests for and obtains the translated address
from the NAT daemon. In some embodiments, the process
3200 requests for the translated address by sending a flow
template to the NAT daemon. The NAT daemon would fill
the flow template with the translated address and will place
that filled-in flow template in the forwarding table (not
shown) that the process uses.

Next, the process 3200 modifies (at 3225) the packet with
the translated address. In some embodiments, the process
modifies an address field in the header of the packet.
Alternatively or conjunctively, the process modifies the
logical context to replace the packet’s address with the
translated address. The process then ends.

It is to be noted that the MAC addresses, IP addresses, and
other network addresses used above and below in this
application are examples for illustrative purpose and may
not have the values in the allowable ranges unless specified
otherwise.

10

15

20

25

30

35

40

45

50

55

60

65

58
II. Next-Hop Virtualization

Logical networks interfacing external networks need to
interact with a next-hop router. The virtualization applica-
tions of different embodiments use different models to
interface a logical L3 network with external networks
through a next-hop router.

First, in a fixed attachment model, the physical infrastruc-
ture interacts with a set of managed integration elements that
will receive all the ingress traffic for a given IP prefix and
will send all the egress traffic back to the physical network.
In this model, logical abstraction can be a single logical
uplink port for the logical L3 router per a given set of
managed integration elements. In some embodiments, there
could be more than a single integration cluster. The logical
control plane that is provided by the control application is
responsible for routing outbound, egress traffic towards the
uplink(s). In some embodiments, examples of managed
integration elements include second-level managed switch-
ing elements that function as extenders, which are described
in U.S. patent application Ser. No. 13/177,535. The
examples of managed integration elements also include the
managed switching element described above by reference to
FIGS. 8, 9, and 10.

Second, in a distributed attachment model, the virtualiza-
tion application distributes the attachment throughout man-
aged edge switching elements that it connects. To do so, the
managed edge switching elements have to integrate to the
physical routing infrastructure. In other words, each man-
aged edge switching element has to be able to communicate
with the physical routing infrastructure outside of the group
of managed switching elements. In some embodiments,
these switching elements use the IGP protocol (or other
routing protocol) to communicate with the physical switch-
ing elements (e.g., the physical routers) that send packets
into the logical network (implemented by the managed
switching elements) and receive packets from the logical
network. Using this protocol the managed edge switching
elements of some embodiments can advertise host routes
(/32) to attract direct ingress traffic to its proper location.
While, in some embodiments, there is no centralized traffic
hotspot as the ingress and egress traffic is completely dis-
tributed over the managed switching elements, the logical
abstraction is still a single logical uplink port for the logical
L3 router and the logical control plane is responsible for
routing traffic to the uplink. Nothing prevents having more
than a single uplink port exposed for the logical control
plane if that is beneficial for the control plane. However, the
number of uplink ports does not have to match with the
number of attachment points in this model.

Third, in a control plane driven model, the logical control
plane is responsible for integrating with the external net-
work. Control plane is exposed with one-to-one routing
integration; for every attachment point in the physical net-
work, there’s a logical port. Logical control plane has the
responsibility to peer with next-hop routers at the routing
protocol level.

The three models all hit different design trade-offs: fixed
attachment model implies non-optimal physical traffic
routes, but require less integration with the physical infra-
structure. Of the distributed models, the fully distributed
model scales best, in some embodiments, as the logical
control plane is not responsible for all the peering traffic,
which in the extreme could be thousands of peering sessions.
However, the control plane driven model gives the maximal
control for the logical control plane. The maximal control
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requires policy routing, though, as the egress port has to
depend on the ingress port if optimal physical routes are
desired.

III. Stateful Packet Operations

Stateful packet operations place NAT on a logical L3
datapath for the routed traffic. In the logical pipeline, net-
work address translation is done in an extra NAT stage
before or after the actual standard 1.3 pipeline. In other
words, network address translation hits the packet before or
after the routing. In some embodiments, NAT configuration
is done via flow templates that create the actual address
translation entries. Flow templates will be further described
below.

Placing the NAT functionality is one feature that deviates
from the approach of performing all or most of the logical
packet processing in first hop. The basic model of executing
most or all of the operations at the first-hop places the
processing of packets flowing in opposite directions at
different first-hop switching elements in some embodiments:
for a given transport level flow, the packets in one direction
would be sent through the logical pipeline at one end, and
the packets in the reverse direction would be sent through
the pipeline at the other end. Unfortunately, the per flow
NAT state can be fairly rich (especially if NAT supports
higher level application protocols) and the state has to be
shared between the directions, for a given transport flow.

Hence, some embodiments let the first-hop switching
elements of the logical port receive the opening packet of the
transport flow to execute the logical pipelines to both
directions. For example, if VM A opens a TCP connection to
VM B, then the edge switching element connected to the
hypervisor (which may run on the same machine as the
hypervisor) of VM A becomes responsible for sending the
packets through the logical pipelines to both directions. This
allows for purely distributed NAT functionality, as well as
having multiple NATs in the logical network topology. The
first-hop switching element will execute all the necessary
NAT translations, regardless how many there are, and the
network address translation just becomes an extra step in the
LDPS pipelines the packet traverses (within that switching
element).

However, placing the feeding of the packets sent in the
reverse direction through the logical pipelines requires addi-
tional measures; otherwise, the first-hop switching element
for the reverse packets will execute the processing (without
having the NAT state locally available). For this purpose,
some embodiments allow the first packet sent from the
source edge switching element (of VM A above) to the
destination edge switching element (of VM B above), to
establish a special “hint state” that makes the destination
switching element send the reverse packets of that transport
flow directly to the source switching element without pro-
cessing. The source switching element will then execute the
pipelines in the reverse direction and reverse the NAT
operations using the local NAT state for the reverse packets.
Some embodiments use the flow templates (which are
described below) to establish this reverse hint state at the
destination switching element, so that the controller does not
need to be involved per flow operations.

The next two figures, FIGS. 33 and 34 illustrate placing
NAT functionality and the hint state. FIG. 33 conceptually
illustrates that a first-hop switching element of some
embodiments performs the entire logical processing pipeline
200 including the NAT operation 2645. FIG. 33 is identical
with FIG. 29 except that the logical processing pipeline 200
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includes the NAT operation 2645 depicted in the 1.3 pro-
cessing 220 to indicate that the NAT operation 2645 is
performed.

A managed switching element of some embodiments that
implements a logical router performs a NAT operation on a
packet after the packet is routed by the logical router. For
instance, when VM 1 that is coupled to the logical switch
220 sends a packet to VM 4 that is coupled to the logical
switch 230, the managed switching element 2505 translates
the source IP address (e.g., 1.1.1.10) of the packet into a
different IP address (e.g., 3.1.1.10) before sending the packet
out to the managed switching element 2510. The managed
switching element 2505 performs the NAT operation 2645
based on a set of NAT rules (e.g., flow entries) configured in
the managed switching element 2505 by the controller
cluster (not shown) that manages the managed switching
element 2505.

The packet that VM 4 receives has the translated IP
address, 3.1.1.10, as the packet’s source IP address. A return
packet from VM 4 to VM 1 will have this translated address
as the packet’s destination IP address. Thus, the translated IP
address has to be translated back to VM 1’s IP address in
order for this packet to reach VM 1. However, the managed
switching element 2510 of some embodiments would not
perform the NAT operation 2645 to recover VM 1’s IP
address for the returning packet because the NAT rules for
performing NAT operations are only in the managed switch-
ing element 2505 and are not in the managed switching
element 2510. In this manner, the NAT rules and the state do
not have to be shared by all potential managed edge switch-
ing elements.

FIG. 34 conceptually illustrates an example of such
embodiments. Specifically, FIG. 34 illustrates that the man-
aged switching element 2510 does not perform a logical
processing pipeline when sending the returning packet to the
managed switching element 2505. This figure also illustrates
that the managed switching element 2505, upon receiving a
returning packet from the managed switching element 2510,
performs the logical processing pipeline 200 as if the
managed switching element 2505 were the first-hop switch-
ing element with respect to this returning packet. FIG. 34 is
identical with FIG. 33 except the logical processing pipeline
is depicted in the opposite direction (with arrows pointing to
the left). FIG. 34 also illustrates a rule 3400 and a forward-
ing table 3405.

The rule 3400, in some embodiments, is a flow entry in
the forwarding table 3405 that is configured by a controller
cluster (not shown) that manages the managed network
switching element 2510. The rule 3400 specifies (or “hints™)
that when the managed switching element 2510 receives a
packet originating from the managed switching element
2505, the managed switching element 2510 should not
perform a logical processing pipeline on the returning pack-
ets to the managed switching element 2505.

When the managed switching element 2510 receives from
the managed switching element 2505 a packet on which the
managed switching element 2505 has performed a NAT
operation, the managed switching element 2510 finds the
rule 3400 based on the information included in the packet’s
header (e.g., logical context). Also, the managed switching
element 2510, in some embodiments, modifies one or more
other flow entries to indicate that no logical processing
pipeline should be performed on packets from the destina-
tion machine (e.g., VM 4) of the received packet that are
headed to the source machine (e.g., VM 1).

The managed switching element 2510 then forwards this
packet to the destination machine, e.g., VM 4. When the
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managed switching element 2510 receives a returning
packet from VM 4 that is headed to VM 1, the managed
switching element 2510 will not perform a logical process-
ing pipeline on this packet. That is, the managed switching
element 2510 will not perform logical forwarding at L.2 or
logical routing at 1.3. The managed switching element 2510
will simply indicate in the logical context for this packet that
no logical processing has been performed on the packet.

When the managed switching element 2505 receives this
packet from the managed switching element 2510, the
managed switching element 2505 performs the logical pro-
cessing pipeline 200. Specifically, the managed switching
element 2505 first performs a logical context look up to
determine the logical context of the packet based on the
information included in the header fields of the packet. In
this example, the source MAC address of the packet is a
MAC address of VM 4 and the source IP address of the
packet is an IP address of VM 4. Because the packet is sent
from VM 4 to VM 1 that is in a different logical network, the
packet has a MAC address associated with port Y of the
logical switch 230 as the destination MAC address (i.e.,
01:01:01:01:01:02 in this example). The destination IP
address of the packet is the NAT ed IP address of VM 1 (i.e.,
3.1.1.10).

The managed switching element 2505 then determines
access control for the packet with respect to the logical
switch 230. For instance, the managed switching element
2505 determines that the packet does not have network
addresses (e.g., source/destination MAC/IP addresses, etc.)
that will cause the logical switch 230 to reject the packet that
came through port 2 of the logical switch 230. The managed
switching element 2505 also identifies from the logical
context that port Y of the logical switch 230 is the port to
send out the packet. Furthermore, the managed switching
element 2505 determines access control for the packet with
respect to port Y. For instance, the managed switching
element 2505 determines that the packet does not have
network addresses that will cause the logical switch 230 not
to send the packet through the port Y.

Next, the managed switching element 2505 performs the
NAT operation 2645 on the packet to translate the destina-
tion IP address back to the IP address of VM 1. That is, the
managed switching element 2505 in this example replaces
3.1.1.10 with 1.1.1.10 based on the NAT rules. The managed
switching element 2505 then performs an L3 processing on
the packet because the packet’s destination IP address, now
1.1.1.10, is for another logical network. The managed
switching element 2505 determines ingress access control
for the packet at .3 with respect to port 2 of the logical
router 225. The managed switching element 2505 also looks
up the flow entries and determines that the packet is to be
sent to the logical port 1 of the logical router 225 because the
destination IP address of the packet, 1.1.1.10, belongs to the
subnet address of 1.1.1.1/24 that is associated with the
logical port 1 of the logical router 225. Furthermore, the
managed switching element 2505 determines egress access
control for the packet with respect to the logical port 1 of the
logical router 225. The managed switching element 2505
also modifies the destination MAC address of the packet to
be a MAC address of VM 1.

The managed switching element 2505 then performs the
L2 processing 215. In this example, the source MAC address
of the packet is now a MAC address of logical port 1 of the
logical router 225 and the source IP address of the packet is
still the IP address of VM 4. The destination IP address of
the packet is the IP address of VM 1 (i.e., 1.1.1.10). In this
example, the logical context specifies that logical switch 220
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is the logical switch that is to forward the packet and that
logical port X of the logical switch 220 is the port through
which the packet was received. The logical context also
specifies that port 1 of the logical switch 220 is the port
through which to send the packet out to the destination, VM
1, because port 1 is associated with the MAC address of VM
1

The managed switching element 2505 then performs
logical forwarding lookups based on the logical context of
the packet, including determining ingress and egress access
control with respect to port X and port 1 of the logical switch
220, respectively. The managed switching element 2505
performs a mapping lookup to determine a physical port to
which the logical port 1 of the logical switch 220 is mapped.
In this example, the managed switching element 2505 deter-
mines that logical port 1 of the logical switch 220 is mapped
to port 4 of the managed switching element 2505. The
managed switching element 2505 then performs a physical
lookup to determine operations for forwarding the packet to
the physical port. In this example, the managed switching
element 2505 determines that the packet should be sent to
VM 1 through port 4 of the managed switching element
2505.

FIG. 35 conceptually illustrates a process 3500 that some
embodiments perform to send a packet to a destination
machine whose address is NAT ed. The process 3500, in
some embodiments, is performed by a managed edge
switching element that receives a packet directly from a
source machine.

The process 3500 begins by receiving (at 3505) a packet
from a source machine. The process then determines (at
3510) whether the packet is headed to a destination machine
whose address is NAT ed. In some embodiments, the pro-
cess determines whether the packet is headed to such
destination machine by looking up flow entries that match
the information included in the header of the packet (e.g.,
destination IP address). One or more flow entries specity that
no logical processing (e.g., logical forwarding at L2 or
logical routing at [.3) should be performed on this packet
when the packet is addressed to a destination machine whose
address is NAT ed. Other flow entries specify that logical
processing should be performed when the packet is
addressed to a destination machine whose address is not
NAT’ed.

When the process 3500 determines (at 3510) that the
packet is headed to a destination machine whose address is
NAT’ed, the process 3515 proceeds to 3520 which will be
described further below. When the process 3500 determines
(at 3510) that the packet is headed to a destination machine
whose address is not NAT ed, the process 3500 performs
logical processing on the packet (e.g., logical forwarding at
L2 and/or logical routing at [.3).

The process 3500 then sends (at 3520) the packet to the
next hop managed switching element in route to the desti-
nation machine. The process 3500 then ends.

Note above, the controllers are not involved in the per
packet operations. The logical control plane only provisions
the FIB rules identifying what should be network address
translated. All per flow state is established by the datapath
(Open vSwitch).

The embodiments described above utilize Source
NAT’ing. However, some embodiments use Destination
NAT’ing (DNAT’ing) along the same lines. In the case of
DNAT’ing, all the processing can be done at the source
managed edge switching element.

Moreover, in the case of placing the NAT functionality
between the external and logical network, the operations are



US 9,461,960 B2

63

no different from the one described above. In this case, for
the flows incoming from the external network, the NAT state
will be held at the extender (which in this case would be the
first-hop managed edge switching element) for both direc-
tions. On the other hand, for transport flows initiated
towards the external network, the state will be held at the
managed edge switching element attached to the originating
host/VM.

With this purely distributed approach for the network
address translation, VM mobility support requires migrating
the established NAT state with the VM to the new hypervi-
sor. Without migrating the NAT state, the transport connec-
tions will break. For such conditions, some embodiments are
designed to expect the NAT to respond with TCP reset to
packets sent to closed/non-existing TCP flows. More
advanced implementations will integrate with the VM man-
agement system facilitating the migration of the NAT state
together with the VM in this case, the transport connections
do not have to break.

FIG. 36 illustrates an example of migrating NAT state
from a first host to a second host as a VM migrates from the
first host to the second host. Specifically, this figure illus-
trates using a hypervisor of the first host to migrate the VM
and the NAT state associated with the VM. The figure
illustrates two hosts 3600 and 3630.

As shown, the host 3600 in this example is a source host
from which a VM 3625 is migrating to the host 3630. In the
host 3600, a NAT daemon 3610 and a managed switching
element 3605 are running. The NAT daemon 3610 is similar
to the NAT daemon 3110 described above by reference to
FIG. 31. The NAT daemon 3610 maintains the NAT table
3115 which includes mappings of original and translated
addresses. The managed switching element 3605 uses the
NAT daemon 3610 to obtain translated address. The man-
aged switching element, in some embodiments, sends flow
templates to the NAT daemon 3610 to send original
addresses and to obtain translated addresses as described
above.

The hypervisor 3680 creates and manages VMs running
in the host 3600. In some embodiments, the hypervisor 3680
notifies the managed switching element 3605 and/or the
NAT daemon 3610 of a migration of a VM running in the
host 3600 out of the host 3600 before the VM migrates to
another host. The managed switching element 3605 and/or
the NAT daemon 3610 gets such notifications by registering
for callbacks in the event of a VM migration in some
embodiments.

In some such embodiments, the managed switching ele-
ment 3605 asks the NAT daemon to fetch the NAT state
(e.g., address mapping for the VM and protocol information,
etc.) associated with the migrating VM and to provide the
NAT state to the hypervisor 3680. In some embodiments, the
NAT daemon 3610 provides the NAT state associated with
the migrating VM to the hypervisor 3680 when the NAT
daemon 3610 is directly notified of the migration by the
hypervisor 3680. The hypervisor 3680 then migrates the
NAT state to the destination host along with the migrating
VM.

In some embodiments, the NAT daemon 3610 sends the
NAT state associated with the migrating VM directly to the
NAT daemon running in the destination host. In these
embodiments, the NAT daemon 3610 and/or the managed
switching element 3605 notifies the hypervisor 3680 of the
completion of the migration of the NAT state so that the
hypervisor 3680 can start migrating the VM to the destina-
tion host.
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In some embodiments, the managed switching element
3605 also provides the flow entries related to the migrating
VM to the hypervisor 3680 or to the managed switching
element running in the destination host. When the hypervi-
sor 3680 is provided with the flow entries, the hypervisor
3680 sends the flow entries to the flow table of the managed
switching element running in the destination host. The
migration of flow entries to the destination host is optional
since the NAT state alone will enable the managed switching
element running in the destination host to obtain translated
addresses for the migrating VM.

An example operation of the source host 3600 will now be
described. When the hypervisor 3680 is to migrate VM 3625
(e.g., per user input or inputs from a control cluster), the
hypervisor 3680 notifies the managed switching element
3605. The managed switching element 3605 in this example
then asks the NAT daemon 3610 to fetch the NAT state
associated with VM 3625 and send the fetched state to the
hypervisor 3680.

The hypervisor 3680 then migrates the VM 3625 to the
destination host 3630 by moving the data of the VM. In
some embodiments, the hypervisor 3680 is capable of live
migration by capturing the running state of the VM 3625 and
sending the state to the VM 3625. The hypervisor 3680 also
moves the fetched NAT state to the NAT table 3645 of the
host 3630 so that the managed switching element 3635
running in the host 3630 can obtain translated addresses
from the NAT daemon 3640 for VM 3625 just migrated into
the host 3630.

FIG. 37 illustrates another example of migrating NAT
state from a first host to a second host as a VM migrates from
the first host to the second host. Specifically, this figure
illustrates using a control cluster to ask a hypervisor of the
first host to fetch the NAT state associated with the migrating
VM and to send the NAT state to the second host. The figure
illustrates two hosts 3600 and 3630. However, a hypervisor
3680 running in the host 3600 in this example does not
support notifications to the managed switching element or
the NAT daemon running in the source host.

Because the hypervisor 3680 of some embodiments does
not notify the managed switching element or the NAT
daemon of a migration of a VM to a destination host, the
NAT state associated with the migrating VM is sent to the
destination host after the hypervisor 3680 starts or completes
migrating a VM to the destination host. In particular, the
managed switching element 3635, in some embodiments,
would detect migration of VM 3625 by, e.g., detecting the
MAC address of 3625 that is new to the managed switching
element 3635. The managed switching element 3635 notifies
the control cluster 3705 the addition of VM 3625 (therefore
a new port of the managed switching element 3635 for the
VM 3625).

The control cluster 3705 is similar to the control clusters
1105 and 2205 described above. Upon receiving the notifi-
cation from the managed switching element 3635 of the
addition of VM, the control cluster 3705 asks the hypervisor
3680 running in the source host 3600 to fetch the NAT state
associated with the migrated VM 3625 and update the NAT
table 3645 with the fetched NAT state. In some embodi-
ments, the control cluster 3705 additionally asks to fetch
flow entries associated with the migrated VM 3625 and put
those flow entries in the flow table 3650 of the destination
host 3630.

In some embodiments, the control cluster 3705 may
directly ask the managed switching element and/or the NAT
daemon 3610 to send the NAT state and/or flow entries to the
NAT daemon 3640 and/or the managed switching element
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3635 so that the NAT table 3645 and/or 3650 are updated
with the NAT state and/or flow entries associated with the
migrated VM 3625.

An example operation of the source host 3600, the des-
tination host 3630, and the control cluster 3705 will now be
described. When the hypervisor 3680 is to migrate VM 3625
(e.g., per user input or inputs from a control cluster), the
hypervisor 3680 migrates the VM 3625 by moving the
configuration data or the running state of the VM 3625 to the
host 3630. The VM 3625, now running in the host 3630,
sends a packet to the managed switching element 3635. The
managed switching element 3635 in this example detects the
migration of VM 3625 to the host 3630 by recognizing that
the source MAC address of the packet is new to the managed
switching element 3635. The managed switching element
3605 in this example then notifies the control cluster 3705 of
the addition of VM 3625 (or, a creation of a new port for the
VM 3625).

The control cluster 3705 then asks the hypervisor 3680 to
fetch the NAT state associated with VM 3625 and to send the
NAT state to the destination host 3630. The managed switch-
ing element 3635 running in the destination host 3630 can
obtain translated addresses from the NAT daemon 3640 for
VM 3625 that has just migrated into the host 3630.

IV. Load-Balancing

Some embodiments implement load balancing as an extra
step in the L3 pipeline. For instance, some embodiments
implement a logical bundle based load-balancing step fol-
lowed by a destination network address translation. In some
embodiments, the logical router (that provides the load-
balance service) hosts the virtual IP address, and hence will
respond to the ARP requests sent to the virtual IP address
(VIP). With this, the virtual IP will remain functional even
if the traffic is sent to the VIP from the same L2 domain in
which the cluster members exist.

FIG. 38 illustrates an example physical implementation of
logical switches and a logical router that performs load
balancing. In particular, this figure illustrates a centralized
L3 routing model in which the logical router is implemented
by an L3 router or a managed switching element based on
flow entries. This figure illustrates managed switching ele-
ments 3805-3825 and VMs 3830-3850. This figure also
illustrates a logical processing pipeline that includes [.2
processing 3855, DNAT and load balancing 3860, [.3 rout-
ing 3865, and [.2 processing 3870 and 3875.

The managed switching element 3805 of some embodi-
ments is a second-level managed switching element func-
tioning as an extender. The managed switching element
3805 in some such embodiments is similar to the managed
switching elements 810 and 1910 described above in that the
managed switching element 3805 implements a logical
router (not shown) based on flow entries (not shown) or is
running in the same host on which an L3 router that
implements the logical router is running. In addition, the
managed switching element 3805 performs DNAT and load
balancing 3860 to translate a destination address into
another address and balance the load among different
machines (e.g., VMs) that provide the same service (e.g., a
web service).

The managed switching elements 3805-3825 implement
logical switches (not shown) to which VMs 3830-3850 are
connected. The VMs 3840 and 3850 in this example provide
the same service. That is, the VMs 3840 and 3850, in some
embodiments, collectively act as a server that provides the
same service. However, the VMs 3850 and 3850 are separate
VMs that have different IP addresses. The managed switch-
ing element 3805 or the L3 router (not shown) used by the
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managed switching element 3805 perform a load balancing
to distribute workload among the VMs 3840 and 3850.

In some embodiments, load balancing is achieved by
translating the destination address of the packets requesting
the service into different addresses of the VMs providing the
service. In particular, the managed switching element 3805
or the L3 router (not shown) used by the managed switching
element 3805 translates the destination addresses of the
request packets into addresses of the several VMs 3840 and
3850 such that no particular VM of the VM gets too much
more workload than the other VMs do. More details about
finding the current workload of the service-providing VMs
will be described further below.

In some embodiments, the managed switching element
3805 or the L3 router perform an [.3 routing 3865 after
performing DNAT and load balancing 3860 of the logical
processing pipeline. Therefore, the managed switching ele-
ment 3805 or the L3 router route the packets to different
managed switching elements based on the translated desti-
nation addresses in these embodiments. The managed
switching elements 3820 and 3825 are edge switching
elements and thus send and receive packets to and from the
VMs 3840 and 3850 directly. In other embodiments, the
managed switching element 3805 or the L3 router performs
the L3 routing 3865 before performing DNAT and load
balancing 3860 of the logical processing pipeline.

An example operation of the managed switching element
3805 will now be described. The managed switching ele-
ment 3810 receives a packet requesting a service collec-
tively provided by the VMs 3840 and 3850. This packet
comes from one of VM 3830, specifically, from an appli-
cation that uses a particular protocol. The packet in this
example includes a protocol number that identifies the
particular protocol. The packet also includes an IP address
that represents the server providing the service as destination
IP address. The details of performing source [.2 processing
3855 on this packet are omitted for simplicity of description
because it is similar to the source [.2 processing examples
described above and below.

After the source L2 processing 3855 is performed to route
the packet to the managed switching element 3805 for
performing an L3 processing that includes 1.3 routing 3865.
In this example, the managed switching element 3805 per-
forms the DNAT and load balancing 3860 on the packet.
That is, the managed switching element 3805 translates the
destination IP address of the packet into an IP address of one
of the VMs that provides the service. In this example, the
managed switching element 3805 selects one of VMs 3840-
3850 that has the least workload among the VMs 3840-3850.
The managed switching element 3805 performs 1.3 routing
3865 on the packet (i.e., routes the packet) based on the new
destination IP address.

The managed switching element 3820 receives the packet
because the destination IP address is of one of the VMs 3840
and this destination IP is resolved into the MAC address of
the VM. The managed switching element 3820 forwards the
packet to the VM. This VM will return packets to the
application that originally requested the service. These
returning packets will reach the managed switching element
3805 and the managed switching element 3805 will perform
NATs and identify that the application is the destination of
these packets.

FIG. 39 illustrates another example physical implemen-
tation of logical switches and a logical router that performs
load balancing. In particular, this figure illustrates a distrib-
uted L3 routing model in which the logical router is imple-
mented by a managed switching element that also performs
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source and destination [.2 processing. That is, this managed
switching element performs the entire logical processing
pipeline. This figure illustrates managed switching elements
3905 and 3820-3825 and VMs 3910 and 3840-3850. This
figure also illustrates a logical processing pipeline that
includes the L2 processing 3855, the DNAT and load
balancing 3860, the L3 routing 3865, and the [.2 processing
3870-3875.

The managed switching element 3905 of some embodi-
ments is similar to the managed switching elements 2505
described above by reference to FIG. 29 in that the managed
switching element 3905 implements the entire logical pro-
cessing pipeline. That is, the managed switching element
3905 implements the logical router and logical switches. In
addition, the managed switching element 3905 performs
DNAT and load balancing 3860 to translate a destination
address into another address and balance the load among
different machines (e.g., VMs) that provide the same service
(e.g., a web service).

As mentioned above, the managed switching element
3905 implements logical switches (not shown) to which
VMs 3910 and 3840-3850 are connected. The managed
switching element 3905 also performs a load balancing to
distribute workload among the VMs 3840 and 3850. In
particular, the managed switching element 3905 translates
the destination addresses of the request packets into
addresses of the several VMs 3840 and 3850 such that no
particular VM of the VMs gets too much more workload
than the other VMs do. More details about finding current
workload of the service-providing VMs will be described
further below.

In some embodiments, the managed switching element
3905 performs an L3 routing 3865 after performing DNAT
and load balancing 3860 of the logical processing pipeline.
Therefore, the managed switching element 3905 routes the
packets to different managed switching elements based on
the translated destination addresses. The managed switching
elements 3820 and 3825 are edge switching elements and
thus send and receive packets to and from the VMs 3840 and
3850 directly. In other embodiments, the managed switching
element 3905 performs the L3 routing 3865 before perform-
ing DNAT and load balancing 3860 of the logical processing
pipeline.

The operation of the managed switching element 3905
would be similar to the example operation described above
by reference to FIG. 38, except that the managed switching
element 3905 performs the entire logical processing pipeline
including the DNAT and load balancing 3860.

FIG. 40 illustrates yet another example physical imple-
mentation of logical switches and a logical router that
performs load balancing. In particular, this figure illustrates
a distributed L3 routing model in which the logical router is
implemented by a managed switching element that also
performs source L2 processing. That is, this managed
switching element as a first-hop managed switching element
performs the source L2 processing and the [L3 processing.
The destination L2 processing is performed by another
managed switching element that is a last-hop managed
switching element. This figure illustrates managed switching
elements 4005 and 3820-3825 and VMs 4010 and 3840-
3850. This figure also illustrates a logical processing pipe-
line that includes the L2 processing 3855, the DNAT and
load balancing 3860, the 1.3 routing 3865, and the [.2
processing 3870-3875.

The managed switching element 4005 of some embodi-
ments is similar to the managed switching elements 2505
described above by reference to FIG. 46 in that the managed
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switching element 4005 performs the source 1.2 processing
and the L3 processing of the logical processing pipeline.
That is, the managed switching element 4005 implements
the logical router and a logical switch that is connected to a
source machine. In addition, the managed switching element
4005 performs DNAT and load balancing 3860 to translate
destination address into another address and balance the load
among different machines (e.g., VMs) that provide the same
service (e.g., a web service).

As mentioned above, the managed switching element
4005 implements a logical switch (not shown) to which one
or more of VMs 4010 are connected. The managed switch-
ing element 4005 also performs a load balancing to distrib-
ute workload among the VMs 3840 and 3850. In particular,
the managed switching element 4005 translates the destina-
tion addresses of the request packets into addresses of the
several VMs 3840 and 3850 such that no particular VM of
the VMs gets too much more workload than the other VM
do. More details about finding the current workload of the
service-providing VMs will be described further below.

In some embodiments, the managed switching element
4005 performs an L3 routing 3865 after performing DNAT
and load balancing 3860 of the logical processing pipeline.
Therefore, the managed switching element 4005 routes the
packets to different managed switching elements based on
the translated destination addresses. The managed switching
elements 3820 and 3825 are edge switching elements and
thus send and receive packets to and from the VMs 3840 and
3850 directly. In other embodiments, the managed switching
element 4005 performs the L3 routing 3865 before perform-
ing DNAT and load balancing 3860 of the logical processing
pipeline.

The operation of the managed switching element 4005
would be similar to the example operation described above
by reference to FIG. 38, except that different managed
switching elements perform different portions of the logical
processing pipeline.

FIG. 41 conceptually illustrates a load balancing daemon
that balances load among the machines that collectively
provides a service (e.g., web service). Specifically, this
figure illustrates that a managed switching element that runs
a logical processing pipeline to logically forward and route
packets uses a load balancing daemon for balancing work-
load among the machines providing the service. This figure
illustrates a host 4100, a managed switching element 4105,
a forwarding table 4120, a load balancing daemon 4110, and
a connection table 4115 in the top half of the figure. This
figure illustrates flow entries 4125 and 4130.

The flow entries 4125 and 4130 each has a qualifier and
an action. The text illustrated as flow entries 4125 and 4130
may not be in an actual format. Rather, the text is just a
conceptual illustration of a qualifier and an action pair. The
host 4100, in some embodiments, is a machine operated by
an operating system (e.g., Windows™ and Linux™) that is
capable of running a set of software applications. The
managed switching element 4105 of some embodiment is a
software switching element (e.g., Open vSwitch) that
executes in the host 4100. As mentioned above, a controller
cluster (not shown) configures a managed switching element
by supplying flow entries that specify the functionality of the
managed switching element. The managed switching ele-
ment 4105 of some embodiments does not itself generate
flow entries.

The managed switching element 4105 of some embodi-
ments runs all or part of the logical processing pipeline
described above by reference to FIGS. 38-40. In particular,
the managed switching element 4105 performs the L3
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processing to route packets received from the machines if
necessary, based on flow entries in the forwarding table
4120. In some embodiments, the managed switching ele-
ment 4105 is an edge switching element that receives a
packet from a machine (not shown) that is coupled to the
managed switching element. In some such embodiments,
one or more virtual machines (not shown) are running in the
host 4100 and are coupled to the managed switching ele-
ments 4105.

When the managed switching element 4105 is configured
to perform load balancing, the managed switching element
4105 of some embodiments uses the load balancing daemon
4110 for performing load balancing on packets. The load
balancing daemon 4110 is similar to the NAT daemon 3110
in that the load balancing daemon 4110 provides a translated
destination address (e.g., a destination IP address). In addi-
tion, the load balancing daemon 4110 selects a destination
into which to translate the original destination address based
on the current load of the machines, the IP addresses of
which are included in the table 4115.

The load balancing daemon 4110 of some embodiments is
a software application running on the host 4100. The load
balancing daemon 4110 maintains the connection table 4115
which includes pairings of connection identifiers and avail-
able addresses of the machines that provide the service.
Though not depicted, the connection table 4115 of some
embodiments may also include the current workload quan-
tified for a machine associated with an address. In some
embodiments, the load balancing daemon 4110 periodically
communicates with the VMs providing the service to get the
updated state of the VMs, including the current workload on
the VMs.

When the managed switching element 4105 asks for an
address to select based on connection identifiers, the load
balancing daemon, in some embodiments, looks up the table
4115 to find the address into which the given destination
address should be translated. In some embodiments, the load
balancing daemon runs a scheduling method to identify a
server VM in order to balance the load among the server
VMs. Such a scheduling algorithm considers the current
load on the machine associated with the address. More
details and examples of load balancing methods are
described in the U.S. Provisional Patent Application 61/560,
279, which is incorporated herein by reference.

The connection identifiers uniquely identify a connection
between the requester of the service (i.e., the origin or source
of the packet) and the machine that ends up providing the
requested service so that the packets returning from the
machine can be accurately relayed back to the requester. The
source IP addresses of these returning packets will be
translated back to an IP address (referred to as “virtual IP
address™) that represents a server providing the service. The
mapping between these connection identifiers will also be
used for the packets that are subsequently sent from the
source. In some embodiments, the connection identifiers
include a source port, a destination port, a source IP address,
a destination IP address, a protocol identifier, etc. The source
port is a port from which the packet was sent (e.g., a TCP
port). The destination port is a port to which the packet is to
be sent. The protocol identifier identifies the type of protocol
(e.g., TCP, UDP, etc.) used for formatting the packet.

The managed switching element 4105 and the load bal-
ancing daemon 4110 of different embodiments use different
techniques to ask for and supply addresses. For instance, the
managed switching element 4105 of some embodiments
sends a packet, which has an original address but does not
have a translated address, to the load balancing daemon. The
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load balancing daemon 4110 of these embodiments trans-
lates the original address into a translated address. The load
balancing daemon 4110 sends the packet back to the man-
aged switching element 4105, which will perform logical
forwarding and/or routing to send the packet towards the
destination machine. In some embodiments, the managed
switching element 4105 initially sends metadata, along the
with packet that contains an original address to resolve, to
the load balancing daemon 4110. This metadata includes
information (e.g., register values, logical pipeline state, etc.)
that the managed switching element 4105 uses to resume
performing the logical processing pipeline when the man-
aged switching element 4105 receives the packet back from
the load balancing daemon 4110.

In other embodiments, the managed switching element
4105 of some embodiments requests an address by sending
a flow template, which is a flow entry that does not have
actual values for the addresses, to the load balancing daemon
4110. The load balancing daemon finds out the addresses to
fill in the flow template by looking up the table 4115. The
load balancing daemon 4110 then sends the flow template
that is filled in with actual addresses back to the managed
switching element 4110 by putting the filled-in flow tem-
plate into the forwarding table 4120. In some embodiments,
the load balancing daemon assigns to the filled-in flow
template a priority value that is higher than the priority value
of the flow template that is not filled in. Moreover, when the
load balancing daemon 4110 fails to find a translated
address, the load balancing daemon would specify in the
flow template to drop the packet.

An example operation of the managed switching element
4105 and the load balancing daemon 4110 will now be
described in terms of three different stages 1-3 (encircled
1-3). In this example, the managed switching element 4115
is a managed edge switching element that receives a packet
to forward and route from a machine (not shown). In
particular, the packet in this example is a request for a
service. The packet has an IP address that represents a server
that provides the requested service.

The managed switching element 4105 receives this packet
and performs the L3 processing based on the flow entries in
the forwarding table 4120. While performing the L3 pro-
cessing 210 on the packet, the managed switching element
4105 (at stage 1) identifies the flow entry 4125 and performs
the action specified in the flow entry 4125. As shown, the
flow entry 4125 indicates that a flow template having
connection identifiers should be sent to the load balancing
daemon 4110 to have the load balancing daemon 4110 to
provide a new destination IP address. In this example, the
flow entry 4125 has a priority value of N, which is a number
in some embodiments.

At stage 2, the load balancing daemon 4110 receives the
flow template and finds out that the destination IP address of
a packet that has the specified connection IDs is to be
translated into 2.1.1.10 by looking up the connection table
4115 and by running a scheduling algorithm. The load
balancing daemon fills out the flow template and inserts the
filled-in template (now the flow entry 4130) into the for-
warding table 4130. In this example, the load balancing
daemon assigns a priority of N+1 to the filled-in template.

At stage 3, the managed switching element 4110 uses the
flow entry 4130 to change the destination IP address for the
packet. Also, for the packets that the managed switching
element 4110 subsequently processes, the managed switch-
ing element 4105 uses flow entry 4130 over the flow entry
4125 when a packet has the specified connection identifiers.
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In some embodiments, the load balancing daemon 4110
and the managed switching element run in a same virtual
machine that is running on the host 4100 or in different
virtual machines running on the host 4100. The load bal-
ancing daemon 4110 and the managed switching element
may also run in separate hosts.

V. DHCP

The virtualization application, in some embodiments,
defines forwarding rules that route DHCP requests to a
DHCP daemon that is running in a shared host. Using a
shared host for this functionality avoids the extra cost of
running a DHCP daemon per customer.

FIG. 42 illustrates a DHCP daemon that provides DHCP
service to different logical networks for different users. This
figure illustrates in the left half of the figure the implemen-
tation of example logical networks 4201 and 4202 for two
different users A and B, respectively. An example physical
implementation of the logical networks 4201 and 4202 is
illustrated in the right half of the figure.

As shown in the left half of the figure, the logical network
4201 includes a logical router 4205 and two logical switches
4210 and 4215. VMs 4220 and 4225 are connected to the
logical switch 4210. That is, VMs 4220 and 4225 send and
receive packets forwarded by the logical switch 4210. VM
4230 is connected to the logical switch 4215. The logical
router 4205 routes packets between the logical switches
4210 and 4215. The logical router 4205 is also connected to
a DHCP Daemon 4206 which provides DHCP service to the
VMs in the logical network 4201, which are VMs of the user
A.

The logical network 4202 for the user B includes a logical
router 4235 and two logical switches 4240 and 4245. VM
4250 and 4255 are connected to the logical switch 4240. VM
4260 is connected to the logical switch 4245. The logical
router 4235 routes packets between the logical switches
4240 and 4245. The logical router 4235 is also connected to
a DHCP Daemon 4236 which provides DHCP service to the
VMs in the logical network 4202, which are VMs of the user
B.

In the logical implementation shown in the left half of the
figure, each logical network for a user has its own DHCP
daemon. In some embodiments, the DHCP daemons 4206
and 4236 may be physically implemented as separate DHCP
daemons running in different hosts or VMs. That is, each
user would have a separate DHCP daemon for the user’s
machines only.

In other embodiments, the DHCP daemons for different
users may be physically implemented as a single DHCP
daemon that provides DHCP service to VMs of different
users. That is, different users share the same DHCP daemon.
The DHCP daemon 4270 is a shared DHCP daemon that
serves VMs of both users A and B. As shown in the right half
of figure, the managed switching elements 4275-4285 that
implement the logical routers 4205 and 4235 and the logical
switches 4210, 4215, 4240 and 4245 for users A and B use
the single DHCP daemon 4270. Therefore, VMs 4220-4260
of the users A and B use the DHCP daemon 4270 to
dynamically obtain an address (e.g., an IP address).

The DHCP daemon 4270 of different embodiments may
run in different hosts. For instance, the DHCP daemon 4270
of some embodiments runs in the same host (not shown) in
which one of the managed switching elements 4275-4285 is
running. In other embodiments, the DHCP daemon 4270
does not run in a host on which a managed switching
element is running and instead runs in a separate host that is
accessible by the managed switching elements.
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FIG. 43 illustrates a central DHCP daemon and several
local DHCP daemons. The central DHCP daemon provides
DHCP service to VMs of different users through local DHCP
daemons. Each local DHCP daemon maintains and manages
a batch of addresses to offload the central DHCP daemon’s
service to the local DHCP daemons. This figure illustrates an
example architecture that includes a central DHCP daemon
4320 and two local DHCP daemons 4330 and 4350.

As shown, the central DHCP daemon 4320 runs in a host
4305 in which a managed switching element 4306 also runs.
The managed switching element 4306 of some embodiments
is a second-level managed switching element functioning as
a pool node for managed switching elements 4340 and 4360.
The central DHCP daemon 4320 provides DHCP services to
different VMs 4345 and 4365 of different users. In some
embodiments, the central DHCP daemon 4320 distributes
the available addresses (e.g., IP addresses) 4325 in batches
of addresses to different local DHCP daemons including
local DHCP daemons 4330 and 4350 in order to offload the
DHCP service to these local DHCP daemons. The central
DHCP daeon 4320 provides more addresses to a local DHCP
daemon when the local DHCP daemon runs out of available
address to assign in its own batch of addresses.

The local DHCP daemon 4330 runs in a host 4310 in
which a managed switching element 4340 also runs. The
managed switching element 4340 is an edge switching
element that directly sends and receives packets to and from
VMs 4345. The managed switching element 4340 imple-
ments one or more logical switches and logical routers of
different users. That is, the VMs 4345 may belong to
different users. The local DHCP daemon 4330 provides
DHCP service to VMs 4345 using the batch of addresses
4335 that the local DHCP daemon 4330 obtains from the
central DHCP daemon 4320. The local DHCP daemon 4330
resorts to the central DHCP daemon 4320 when the local
DHCP daemon 4330 runs out of available addresses to
assign in the batch of addresses 4335. In some embodiments,
the local DHCP daemon 4330 communicates with the cen-
tral DHCP daemon 4320 via the managed switching ele-
ments 4340 and 4306. The managed switching elements
4340 and 4306 has a tunnel established between them in
some embodiments.

Similarly, the local DHCP daemon 4350 runs in a host
4315 in which a managed switching element 4360 also runs.
The managed switching element 4360 is an edge switching
element that directly sends and receives packets to and from
VMs 4365. The managed switching element 4360 imple-
ments one or more logical switches and logical routers of
different users. The local DHCP daemon 4350 provides
DHCP service to VMs 4365 using the batch of addresses
4355 that the local DHCP daemon 4350 obtains from the
central DHCP daemon 4320. In some embodiments, the
batch of addresses 4355 does not include addresses that are
in the batch of addresses 4335 that are allocated to the local
DHCP daemon running in the host 4310. The local DHCP
daemon 4350 also resorts to the central DHCP daemon 4320
when the local DHCP daemon 4350 runs out of available
addresses to assign in its own batch of addresses 4355. In
some embodiments, the local DHCP daemon 4350 commu-
nicates with the central DHCP daemon 4320 via the man-
aged switching elements 4360 and 4306. The managed
switching elements 4360 and 4306 have a tunnel established
between them in some embodiments.

V1. Interposing Service VMS

In the discussion above, various L3 services that are
provided by the virtualization application of some embodi-
ments were described. To maximize the network control
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system’s flexibility, some embodiments interpose service
machines that provide similar functionality to those pro-
vided by the “middleboxes” that users use today in the
physical networks.

Accordingly, the network control system of some embodi-
ments includes at least one “middlebox” VM that is attached
to a LDPS of a logical network. Then the pipeline state of the
LDP sets is programmed by the control application (that
populates the logical control plane) so that the relevant
packets are forwarded to the logical port of this VM. After
the VM has processed the packet, the packet is sent back to
the logical network so that its forwarding continues through
the logical network. In some embodiments, the network
control system utilizes many such “middlebox” VMs. The
middlebox VMs interposed in this manner may be very
stateful and implement features well beyond the L3 services
described in this document.

VIIL. Scalability

The scalability implications of the logical 1.3 switching
design of some embodiments along three dimensions are
addressed below. These three dimensions are: (1) logical
state, (2) physical tunneling state, and (3) distributed binding
lookups. Most of the logical pipeline processing occurs at
the first hop. This implies that all the logical (table) state, of
all interconnected LDP sets, is disseminated, in some
embodiments, to everywhere in the network where the
pipeline execution may take place. In other words, the
combined logical state of all interconnected LDP sets is
disseminated to every managed edge switching element
attached to any of these LDP sets in some embodiments.
However, in some embodiments, the “meshiness” of the
logical topology does not increase the dissemination load of
the logical state.

To limit the state dissemination, some embodiments bal-
ance the pipeline execution between the source and desti-
nation devices so that the last LDPS pipeline would be
executed not at the first hop but at the last hop. However, in
some cases, this may result in not disseminating enough
state for every managed switching element to do the logical
forwarding decision of the last LDPS; without that state, the
source managed switching elements might not even be able
to deliver the packets to the destination managed switching
elements. Accordingly, some embodiments will constrain
the general LDPS model, in order to balance the pipeline
execution between the source and destination devices.

The logical state itself is not likely to contain more than
at most O(N) entries (N is the total number of logical ports
in the interconnected LDP sets) as the logical control plane
is designed, in some embodiments, to mimic the physical
control planes that are used today, and the physical control
planes are limited by the capabilities of existing hardware
switching chipsets. Therefore, disseminating the logical
state might not be the primary bottleneck of the system but
eventually it might become one, as the logical control plane
design grows.

Some embodiments partition the managed switching ele-
ments of a network into cliques interconnected by higher-
level aggregation switching elements. Instead of implement-
ing partitioning to reduce logical state with an “everything
on the first-hop” model, some embodiments partition to
reduce the tunneling state, as discussed below. Examples of
cliques are described in the above-mentioned U.S. patent
application Ser. No. 13/177,535. This application also
describes various embodiments that perform all or most of
the logical data processing at the first-hop, managed switch-
ing elements.
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The physical tunneling state maintained in the whole
system is O(N?) where N is the number of logical ports in
the interconnected LDP sets total. This is because any
managed edge switching element with a logical port has to
be able to directly send the traffic to the destination managed
edge switching element. Therefore, maintaining tunneling
state in an efficient manner, without imposing O(N?) load to
any centralized control element becomes even more impor-
tant than with pure L2 LDP sets. The aggregation switching
elements are used, in some embodiments, to slice the
network into cliques. In some of these embodiments, the
packet is still logically routed all the way in the source
managed edge switching element but instead of tunneling it
directly to the destination edge switching element, it is sent
to a pool node that routes it towards the destination based on
the destination MAC address. In essence, the last L2 LDPS
spans multiple cliques, and pool nodes are used to stitch
together portions of that .2 domain.

FIGS. 44-45B illustrate a distributed logical router imple-
mented in several managed switching elements based on
flow entries of the managed switching elements. In particu-
lar, FIGS. 44-45B illustrate that some of the destination 1.2
processing is performed by a last hop managed switching
element (i.e., the switching element that sends a packet
directly to a destination machine).

FIG. 44 conceptually illustrates an example of performing
some logical processing at the last hop switching element.
Specifically, FIG. 44 illustrates that the managed switching
element 2505 that is coupled to a source machine for a
packet performs most of the logical processing pipeline 200
and the managed switching element 2510 that is coupled to
a destination machine performs some of the logical process-
ing pipeline 200. The figure illustrates the logical router 225
and the logical switches 220 and 230 in the left half of the
figure. This figure illustrates the managed switching ele-
ments 2505 and 2510 in the right half of the figure. The
figure illustrates VM 1-4 in both the right and the left halves
of the figure.

In some embodiments, a managed switching element does
not keep all the information (e.g., flow entries in lookup
tables) to perform the entire logical processing pipeline 200.
For instance, the managed switching eclement of these
embodiments does not maintain the information for deter-
mining access control with respect to a logical port of the
destination logical network through which to send the packet
to the destination machine of the packet.

An example packet flow along the managed switching
elements 2505 and 2510 will now be described. When VM
1 that is coupled to the logical switch 220 sends a packet to
VM 4 that is coupled to the logical switch 230, the packet
is first sent to the managed switching element 2505. The
managed switching element 2505 then performs the 1.2
processing 205 and the [.3 processing 210 on the packet.

The managed switching element 2505 then performs a
portion of the L.2 processing 215. Specifically, the managed
switching element 2505 determines access control for the
packet. For instance, the managed switching element 2505
determines that the packet does not have network addresses
(e.g., source/destination MAC/IP addresses, etc.) that will
cause the logical switch 230 to reject the packet that came
through port Y of the logical switch 230. The managed
switching element 2505 then determines that port 1 of the
logical switch 230 is the port through which to send the
packet out to the destination, VM 4. However, the managed
switching element 2505 does not determine access control
for the packet with respect to port 1 of the logical switch 230
because the managed switching element 2505, in some
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embodiments, does not have information (e.g., flow entries)
to perform the egress ACL 2670.

The managed switching element 2505 then performs a
mapping lookup to determine a physical port to which the
logical port 1 of the logical switch 230 is mapped. In this
example, the managed switching element 2505 determines
that logical port 1 of the logical switch 230 is mapped to port
5 of the managed switching element 2510. The managed
switching element 2505 then performs a physical lookup to
determine operations for forwarding the packet to the physi-
cal port. In this example, the managed switching element
2505 determines that the packet should be sent to VM 4
through port 5 of the managed switching element 2510. The
managed switching element 2505 in this example modifies
the logical context of the packet before sending it out along
with the packet to VM 4.

The managed switching element 2505 sends the packet to
the managed switching element 2510. In some cases, the
managed switching element 2505 sends the packet over the
tunnel that is established between the managed switching
elements 2505 and 2510 (e.g., the tunnel that terminates at
port 3 of the managed switching element 2505 and port 3 of
the managed switching element 2510). When the tunnel is
not available, the managed switching elements 2505 sends
the packet to a pool node (not shown) so that the packet can
reach the managed switching element 2510.

When the managed switching element 2510 receives the
packet, the managed switching element 2510 performs the
egress ACL 2670 on the packet based on the logical context
of the packet (the logical context would indicate that it is the
egress ACL 2670 that is left to be performed on the packet).
For instance, the managed switching element 2510 deter-
mines that the packet does not have network addresses that
will cause the logical switch 230 not to send the packet
through the port 1 of the logical switch 230. The managed
switching element 2510 then sends the packet to VM 4
through port 5 of the managed switching element 2510 as
determined by the managed switching element 2505 that
performed the L2 processing 215.

FIGS. 45A-45B conceptually illustrate an example opera-
tion of the logical switches 220 and 230, the logical router
225, and the managed switching elements 2505 and 2510
described above by reference to FIG. 44. Specifically, FIG.
45A illustrates an operation of the managed switching
element 2505, which implements the logical router 225,
logical switch 220, and a portion of logical router 230. FIG.
45B illustrates an operation of the managed switching
element 2510 that implements a portion of logical switch
230.

As shown in the bottom half of FIG. 45A, the managed
switching element 2505 includes [.2 entries 4505 and 4515
and L3 entries 4510. These entries are flow entries that a
controller cluster (not shown) supplies to the managed
switching element 2505. Although these entries are depicted
as three separate tables, the tables do not necessarily have to
be separate tables. That is, a single table may include all
these flow entries.

When VM 1 that is coupled to the logical switch 220
sends a packet 4530 to VM 4 that is coupled to the logical
switch 230, the packet is first sent to the managed switching
element 2505 through port 4 of the managed switching
element 2505. The managed switching element 2505 per-
forms an 1.2 processing on the packet based on the forward-
ing tables 4505-4515 of the managed switching element
2505. In this example, the packet 4530 has a destination IP
address of 1.1.2.10, which is the IP address of VM 4. The
packet 4530°s source IP address is 1.1.1.10. The packet 4530

10

15

20

25

30

35

40

45

50

55

60

65

76
also has VM 1’s MAC address as a source MAC address and
the MAC address of the logical port 1 (e.g., 01:01:01:01:
01:01) of the logical router 225 as a destination MAC
address.

The operation of the managed switching element 2505
until the managed switching element identifies an encircled
9 and performs 1.2 logical processing 2665 is similar to the
operation of the managed switching element 2505 in the
example of FIG. 30A, except that the managed switching
element 2505 in the example of FIG. 45A is performed on
packet 4530.

Based on the logical context and/or other fields stored in
the packet 4530°s header, the managed switching element
2505 then identifies a record indicated by an encircled 10
(referred to as “record 10”) in the L2 entries 4515 that
implements the context mapping of the stage 2675. In this
example, the record 10 identifies port 5 of the managed
switching element 2510 to which VM 4 is coupled as the
port that corresponds to the logical port (determined at stage
2665) of the logical switch 230 to which the packet 4530 is
to be forwarded. The record 10 additionally specifies that the
packet 4530 be further processed by the forwarding tables
(e.g., by sending the packet 4530 to a dispatch port).

Based on the logical context and/or other fields stored in
the packet 4530°s header, the managed switching element
2505 then identifies a record indicated by an encircled 11
(referred to as “record 11”) in the L2 entries 4515 that
implements the physical mapping of the stage 2680. The
record 11 specifies port 3 of the managed switching element
2505 as a port through which the packet 4530 is to be sent
in order for the packet 4530 to reach the managed switching
element 2510. In this case, the managed switching element
2505 is to send the packet 4530 out of port 3 of managed
switching element 2505 that is coupled to the managed
switching element 2510.

As shown in FIG. 45B, the managed switching element
2510 includes a forwarding table that includes rules (e.g.,
flow entries) for processing and routing the packet 4530.
When the managed switching element 2510 receives the
packet 4530 from the managed switching element 805, the
managed switching element 2510 begins processing the
packet 4530 based on the forwarding tables of the managed
switching element 2510. The managed switching element
2510 identifies a record indicated by an encircled 1 (referred
to as “record 1) in the forwarding tables that implements
the context mapping. The record 1 identifies the packet
4530’s logical context based on the logical context that is
stored in the packet 4530°s header. The logical context
specifies that the packet 4530 has been processed up to the
stage 2665 by the managed switching element 805. As such,
the record 1 specifies that the packet 4530 be further
processed by the forwarding tables (e.g., by sending the
packet 4530 to a dispatch port).

Next, the managed switching element 2510 identifies,
based on the logical context and/or other fields stored in the
packet 4530’s header, a record indicated by an encircled 2
(referred to as “record 2”) in the forwarding tables that
implements the egress ACL. In this example, the record 2
allows the packet 4530 to be further processed and, thus,
specifies the packet 4530 be further processed by the for-
warding tables (e.g., by sending the packet 4530 to a
dispatch port). In addition, the record 2 specifies that the
managed switching element 2510 store the logical context
(i.e., the packet 4530 has been processed for .2 egress ACL.
of the logical switch 230) of the packet 4530 in the set of
fields of the packet 4530’s header.
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Next, the managed switching element 2510 identifies,
based on the logical context and/or other fields stored in the
packet 4530°s header, a record indicated by an encircled 3
(referred to as “record 3”) in the forwarding tables that
implements the physical mapping. The record 3 specifies the
port 5 of the managed switching element 2510 through
which the packet 4530 is to be sent in order for the packet
4530 to reach VM 4. In this case, the managed switching
element 2510 is to send the packet 4530 out of port 5 of
managed switching element 2510 that is coupled to VM 4.
In some embodiments, the managed switching element 2510
removes the logical context from the packet 4530 before
sending the packet to VM 4.

FIGS. 46-47B illustrate a distributed logical router imple-
mented in several managed switching elements based on
flow entries of the managed switching elements. In particu-
lar, FIGS. 46-47B illustrate that the source .2 processing
205 and L3 processing 210 are performed by a first hop
managed switching element (i.e., the switching element that
receives a packet directly from a source machine) and the
entire destination .2 processing 215 is performed by a last
hop managed switching element (i.e., the switching element
that sends a packet directly to a destination machine).

FIG. 46 conceptually illustrates an example of performing
some logical processing at the last hop switching element.
Specifically, FIG. 46 illustrates that the managed switching
element 2505 that is coupled to a source machine for a
packet performs the L2 processing 205 and the L3 process-
ing 210 and the managed switching element 2510 that is
coupled to a destination machine performs the .2 processing
215. That is, the managed switching element 2505 performs
L2 forwarding for the source logical network and the [.3
routing and the L2 forwarding for the destination logical
network is performed by the managed switching element
2510. The figure illustrates the logical router 225 and the
logical switches 220 and 230 in the left half of the figure.
This figure illustrates the managed switching elements 2505
and 2510 in the right half of the figure. The figure illustrates
VMs 1-4 in both the right and the left halves of the figure.

In some embodiments, a managed switching element does
not keep all the information (e.g., flow entries in lookup
tables) to perform the entire logical processing pipeline 200.
For instance, the managed switching element of these
embodiments does not maintain the information for per-
forming logical forwarding for the destination logical net-
work on the packet.

An example packet flow along the managed switching
elements 2505 and 2510 will now be described. When VM
1 that is coupled to the logical switch 220 sends a packet to
VM 4 that is coupled to the logical switch 230, the packet
is first sent to the managed switching element 2505. The
managed switching element 2505 then performs the 1.2
processing 205 and the [.3 processing 210 on the packet.

The managed switching element 2505 sends the packet to
the managed switching element 2510. In some cases, the
managed switching element 2505 sends the packet over the
tunnel that is established between the managed switching
elements 2505 and 2510 (e.g., the tunnel that terminates at
port 3 of the managed switching element 2505 and port 3 of
the managed switching element 2510). When the tunnel is
not available, the managed switching elements 2505 sends
the packet to a pool node (not shown) so that the packet can
reach the managed switching element 2510.

When the managed switching element 2510 receives the
packet, the managed switching element 2510 performs the
L2 processing 215 on the packet based on the logical context
of the packet (the logical context would indicate that it is the
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entire L2 processing 215 that is left to be performed on the
packet). The managed switching element 2510 then sends
the packet to VM 4 through port 5 of the managed switching
element 2510.

FIGS. 47A-47B conceptually illustrate an example opera-
tion of the logical switches 220 and 230, the logical router
225, and the managed switching elements 2505 and 2510
described above by reference to FIG. 46. Specifically, FIG.
47A illustrates an operation of the managed switching
element 2505, which implements the logical switch 220 and
the logical router 225. FIG. 47B illustrates an operation of
the managed switching element 2505 that implements the
logical switch 230.

As shown in the bottom half of FIG. 47A, the managed
switching element 2505 includes 1.2 entries 4705 and 13
entries 4710. These entries are flow entries that a controller
cluster (not shown) supplies to the managed switching
element 2505. Although these entries are depicted as two
separate tables, the tables do not necessarily have to be
separate tables. That is, a single table may include all these
flow entries.

When VM 1 that is coupled to the logical switch 220
sends a packet 4730 to VM 4 that is coupled to the logical
switch 230, the packet is first sent to the managed switching
element 2505 through port 4 of the managed switching
element 2505. The managed switching element 2505 per-
forms an 1.2 processing on the packet based on the forward-
ing tables 4705-4710 of the managed switching element
2505. In this example, the packet 4730 has a destination IP
address of 1.1.2.10, which is the IP address of VM 4. The
packet 4730’s source IP address is 1.1.1.10. The packet 4730
also has VM 1’s MAC address as a source MAC address and
the MAC address of the logical port 1 (e.g., 01:01:01:01:
01:01) of the logical router 225 as a destination MAC
address.

The operation of the managed switching element 2505
until the managed switching element identifies an encircled
7 and performs 1.3 egress ACL with respect to the port 2 of
the logical router 225 is similar to the operation of the
managed switching element 2505 in the example of FIG.
47A, except that the managed switching element 2505 in the
example of FIG. 47A is performed on packet 4730.

Based on the logical context and/or other fields stored in
the packet 4730°s header, the managed switching element
2505 then identifies a record indicated by an encircled 8
(referred to as “record 8”) in the L2 entries 4710 that
implements the physical mapping of the stage 2680. The
record 8 specifies that the logical switch 230 is implemented
in the managed switching element 2510 and the packet
should be sent to the managed switching element 2510.

Based on the logical context and/or other fields stored in
the packet 4730°s header, the managed switching element
2505 then identifies a record indicated by an encircled 9
(referred to as “record 9”) in the L2 entries 4715 that
implements the physical mapping of the stage 2680. The
record 9 specifies port 3 of the managed switching element
2505 as a port through which the packet 4730 is to be sent
in order for the packet 4730 to reach the managed switching
element 2510. In this case, the managed switching element
2505 is to send the packet 4730 out of port 3 of managed
switching element 2505 that is coupled to the managed
switching element 2510.

As shown in FIG. 47B, the managed switching element
2510 includes a forwarding table that includes rules (e.g.,
flow entries) for processing and routing the packet 4730.
When the managed switching element 2510 receives the
packet 4730 from the managed switching element 2510, the
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managed switching element 2510 begins processing the
packet 4730 based on the forwarding tables of the managed
switching element 2510. The managed switching element
2510 identifies a record indicated by an encircled 1 (referred
to as “record 1) in the forwarding tables that implements
the context mapping. The record 1 identifies the packet
4730’s logical context based on the logical context that is
stored in the packet 4730°s header. The logical context
specifies that the L2 processing 205 and the L3 processing
210 have been performed on the packet 4730 by the man-
aged switching element 810. The record 1 specifies that the
packet 4730 be further processed by the forwarding tables
(e.g., by sending the packet 4730 to a dispatch port).

Based on the logical context and/or other fields stored in
the packet 4730°s header, the managed switching element
2510 identifies a record indicated by an encircled 2 (referred
to as “record 2”) in the 1.2 forwarding table that implements
the L2 ingress ACL. In this example, the record 2 allows the
packet 4730 to come through the logical port Y of the logical
switch 230 (not shown) and, thus, specifies the packet 4730
be further processed by the managed switching element
2510 (e.g., by sending the packet 4730 to a dispatch port).
In addition, the record 2 specifies that the managed switch-
ing element 2510 store the logical context (i.e., the packet
4730 has been processed by the stage 4762 of the processing
pipeline 4700) of the packet 4730 in the set of fields of the
packet 4730’s header.

Next, the managed switching element 2510 identifies,
based on the logical context and/or other fields stored in the
packet 4730’s header, a record indicated by an encircled 3
(referred to as “record 3”) in the [.2 forwarding table that
implements the logical 1.2 forwarding. The record 3 speci-
fies that a packet with the MAC address of VM 4 as
destination MAC address should be forwarded through a
logical port 2 of the logical switch 230 that is connected to
VM 4.

The record 3 also specifies that the packet 4730 be further
processed by the forwarding tables (e.g., by sending the
packet 4730 to a dispatch port). Also, the record 3 specifies
that the managed switching element 2510 store the logical
context (i.e., the packet 4730 has been processed by the
stage 4766 of the processing pipeline 4700) in the set of
fields of the packet

Next, the managed switching element 2510 identifies,
based on the logical context and/or other fields stored in the
packet 4730’s header, a record indicated by an encircled 4
(referred to as “record 4”) in the forwarding tables that
implements the egress ACL. In this example, the record 4
allows the packet 4730 to be further processed and, thus,
specifies the packet 4730 be further processed by the for-
warding tables (e.g., by sending the packet 4730 to a
dispatch port). In addition, the record 4 specifies that the
managed switching element 2510 store the logical context
(i.e., the packet 4730 has been processed for [.2 egress ACL.
of the logical switch 230) of the packet 4730 in the set of
fields of the packet 4730’s header.

Based on the logical context and/or other fields stored in
the packet 4730°s header, the managed switching element
2505 then identifies a record indicated by an encircled 5
(referred to as “record 5”) in the L2 entries 4715 that
implements the context mapping. In this example, the record
5 identifies port 5 of the managed switching element 2510 to
which VM 4 is coupled as the port that corresponds to the
logical port 2 of the logical switch 230 to which the packet
4730 is to be forwarded. The record 5 additionally specifies
that the packet 4730 be further processed by the forwarding
tables (e.g., by sending the packet 4730 to a dispatch port).
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Next, the managed switching element 2510 identifies,
based on the logical context and/or other fields stored in the
packet 4730’s header, a record indicated by an encircled 6
(referred to as “record 6”) in the forwarding tables that
implements the physical mapping. The record 6 specifies the
port 5 of the managed switching element 2510 through
which the packet 4730 is to be sent in order for the packet
4730 to reach VM 4. In this case, the managed switching
element 2510 is to send the packet 4730 out of port 5 of
managed switching element 2510 that is coupled to VM 4.
In some embodiments, the managed switching element 2510
removes the logical context from the packet 4730 before
sending the packet to VM 4.

The execution of all the pipelines on the logical path of a
packet has implications to the distributed lookups, namely
ARP and learning. As the lookups can now be executed by
any edge switching element having a logical port attached to
the logical network, the total volume of the lookups is going
to exceed the lookups executed on a similar physical topol-
ogy; even though the packet would head towards the same
port, differing senders cannot share the cached lookup state,
as the lookups will be initiated on different managed edge
switching elements. Hence, the problems of flooding are
amplified by the logical topology and a unicast mapping
based approach for lookups is preferred in practice.

By sending a special lookup packet towards a cloud of
mapping servers (e.g., pool or root nodes), the source edge
switching element can do the necessary lookups without
resorting to flooding. In some embodiments, the mapping
server benefits from heavy traffic aggregate locality (and
hence good cache hit ratios on client side) as well as from
datapath-only implementation resulting in excellent
throughput.

FIG. 48 conceptually illustrates an example software
architecture of a host 4800 on which a managed switching
element runs. Specifically, this figure illustrates that the host
4800 also runs an L3 daemon that resolves an L3 address
(e.g., an IP address) into an L2 address (e.g., a MAC
address) for a packet that the .3 daemon receives from the
managed switching element. This figure illustrates that the
host 4800 includes a managed switching element 4805, a
forwarding table 4820, an 1.3 daemon 4810, and a mapping
table 4815 in the top half of the figure. This figure also
illustrates flow entries 4825 and 4830.

The flow entries 4825 and 4830 each has a qualifier and
an action. The text illustrated as flow entries 4825 and 4830
may not be an actual format. Rather, the text is just a
conceptual illustration of a qualifier and an action pair. In
some embodiments, flow entries have priorities and a man-
aged switching element takes the action of the flow entry
with the highest priority when qualifiers for more than one
flow entry are satisfied.

The host 4800, in some embodiments, is a machine
operated by an operating system (e.g., Windows™ and
Linux™) that is capable of running a set of software
applications. The managed switching element 4805 of some
embodiment is a software switching element (e.g., Open
vSwitch) that executes in the host 4800. As mentioned
above, a controller cluster (not shown) configures a man-
aged switching element by supplying flow entries that
specify the functionality of the managed switching element.
The managed switching element 4805 of some embodiments
does not itself generate flow entries and ARP requests.

The managed switching element 4805 of some embodi-
ments runs all or part of the logical processing pipeline 200
described above. In particular, the managed switching ele-
ment 4805 is a managed switching element (e.g., the man-
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aged switching elements 1720 or 2505) that performs the [.3
processing 210 to route packets received from the machines
as necessary, based on flow entries in the forwarding table
4820. In some embodiments, the managed switching ele-
ment 4805 is an edge switching element that receives a
packet from a machine (not shown) that is coupled to the
managed switching element. In some such embodiments,
one or more virtual machines (not shown) are running in the
host 4800 and are coupled to the managed switching ele-
ments 4805. In other embodiments, the managed switching
element is a second-level managed switching element.

When the managed switching element 4805 receives a
packet that is the very first packet being sent to a destination
machine that is in another logical network (or the packet
itself is an ARP request), the managed switching element
4805 of these embodiments would not yet know the MAC
address of the destination machine. In other words, the
managed switching element 4805 would not know the
mapping between the next-hop IP address and the destina-
tion MAC address. In order to resolve the next-hop IP
address into the destination MAC address, the managed
switching element 4805 of some embodiments requests the
destination MAC address of the packet from the .3 daemon
4810.

The L3 daemon 4810 of some embodiments is a software
application running on the host 4800. The [.3 daemon 4810
maintains the table 4815 which includes mappings of IP and
MAC addresses. When the managed switching element
4805 asks for a destination MAC address that corresponds to
a next-hop IP address, the 1.3 daemon looks up the mapping
table 4815 to find the destination MAC address to which the
source [P address is mapped. (In some cases, the destination
MAC address to which the source IP address is mapped is
the MAC address of the next-hop logical router).

The managed switching element 4805 and the [.3 daemon
4810 of different embodiments uses different techniques to
ask for and supply addresses. For instance, the managed
switching element 4805 of some embodiments sends a
packet, which has a destination IP address but does not have
a destination MAC address, to the L3 daemon. The L3
daemon 4810 of these embodiments resolves the IP address
into a destination MAC address. The [.3 daemon 4810 sends
the packet back to the managed switching element 4805,
which will perform logical forwarding and/or routing to
send the packet towards the destination machine. In some
embodiments, the managed switching element 4805 initially
sends metadata, along the packet that contains a destination
IP address to resolve, to the L3 daemon 4810. This metadata
includes information (e.g., register values, logical pipeline
state, etc.) that the managed switching element 4805 uses to
resume performing the logical processing pipeline when the
managed switching element 4805 receives the packet back
from the .3 daemon 4810.

In other embodiments, the managed switching element
4805 requests a destination address by sending a flow
template, which is a flow entry that does not have actual
value for the destination MAC addresses, to the L3 daemon
4810. The L3 daemon 4810 finds the destination MAC
addresses to fill in the flow template by looking up the
mapping table 4815. The .3 daemon 4810 then sends the
flow template that is filled in with actual destination MAC
addresses back to the managed switching element 4810 by
putting the filled-in flow template into the forwarding table
4820. In some embodiments, the [.3 daemon assigns the
filled-in flow template a priority value that is higher than the
priority value of the flow template that is not filled in.
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When the mapping table 4815 has an entry for the
destination IP address and the entry has the destination MAC
address mapped to the destination IP address, the [.3 daemon
4810 uses the destination MAC address to write in the
packet or fill in the flow template. When there is no such
entry, the L3 daemon generates an ARP request and broad-
casts the ARP packet to other hosts or VMs that run L3
daemons. In particular, the [.3 daemon of some embodi-
ments only sends the ARP requests to those hosts or VMs to
which the next-hop logical L3 router may be attached. The
L3 daemon receives a response to the ARP packet that
contains the destination MAC address from one of the hosts
or VMs that received the ARP packet. The .3 daemon 4810
maps the destination IP address to the destination MAC
address and adds this mapping to the mapping table 4815. In
some embodiments, the .3 daemon 4810 sends a unicast
packet periodically to another .3 daemon that responded to
the ARP request to check the validity of the destination
MAC address. In this manner, the [.3 daemon 4810 keeps
the IP and MAC addresses mapping up to date.

In some embodiments, when the L3 daemon 4810 still
fails to find a resolved address after looking up the flow
entries and sending ARP requests to other [.3 daemon
instances, the [.3 daemon would specify in the flow template
to drop the packet or the L3 daemon itself will drop the
packet.

When the managed switching element 4805 receives an
ARP packet from another host or VM, the managed switch-
ing element 4805 of some embodiments does not forward
the ARP packet to the machines that are coupled to the
managed switching element. The managed switching ele-
ment 4800 in these embodiments sends the ARP packet to
the .3 daemon. The [.3 daemon maintains in the mapping
table 4815 mapping between IP addresses and MAC
addresses that are locally available (e.g., IP addresses and
MAC addresses of the machines that are coupled to the
managed switching element 4805). When the mapping table
4815 has an entry for the IP address of the received ARP
packet and the entry has a MAC address of a VM that is
coupled to the managed switching element 4805, the [.3
daemon sends the MAC address, in the response to the ARP
packet, to the host or VM (i.e., the 1.3 daemon of the host or
VM) from which the ARP packet originates.

An example operation of the managed switching element
4805 and the L3 daemon 4810 will now be described in
terms of three different stages 1-3 (encircled 1-3). In this
example, the managed switching element 4805 is a managed
edge switching element that receives a packet to forward and
route from a machine (not shown). The managed switching
element 4805 receives a packet and performs the logical
processing 200 based on the flow entries in the forwarding
table 4820.

When the packet is the very first packet that bears the IP
address of the destination machine or the packet is an ARP
request from a source machine, the managed switching
element 4820 (at stage 1) identifies the flow entry 4825 and
performs the action specified in the flow entry 4825. As
shown, the flow entry 4825 indicates that a flow template
having a destination IP address 1.1.2.10 to be resolved to a
destination MAC X should be sent to the L3 daemon 4810.
In this example, the flow entry 4825 has a priority value of
N, which is a number in some embodiments.

At stage 2, the L3 daemon 4810 receives the flow tem-
plate and finds out that 1.1.2.10 is to be resolved to 01:01:
01:01:01:09 by looking up the mapping table 4815. The L3
daemon fills out the flow template and inserts the filled-in
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template (now the flow entry 4830) into the forwarding table
4830. In this example, the 1.3 daemon assigns a priority of
N+1 to the filled-in template.

At stage 3, the managed switching element 4810, in some
embodiments, uses the flow entry 4830 to set the destination
MAC address for the packet. Also, for the packets that the
managed switching element 4810 subsequently processes,
the managed switching element 4805 uses flow entry 4830
over the flow entry 4825 when a packet has the destination
IP address of 1.1.2.10.

In some embodiments, the .3 daemon 4810 and the
managed switching element runs in a same virtual machine
that is running on the host 4800 or in different virtual
machines running on the host 4800. In some embodiments,
the 1.3 daemon 4810 runs in the user space of a virtual
machine. The L3 daemon 4810 and the managed switching
element may also run in separate hosts.

In some embodiments, the managed switching element
4805 does not rely on the 1.3 daemon 4810 to resolve
addresses. In some such embodiments, the control cluster
(not shown in FIG. 48) may statically configure the flow
entries 4820 such that the flow entries 4820 include the
mappings between [P addresses to MAC addresses obtained
through API calls (i.e., inputs) or DHCP.

FIG. 49 conceptually illustrates a process 4900 that some
embodiments perform to resolve network addresses. In some
embodiments, the process 4900 is performed by a managed
switching element that performs an L3 processing 210 to
route packets at .3 (e.g., the managed switching elements
1720, 2505, or 3105). The process 4900, in some embodi-
ments, starts when the process receives a packet that is to be
logically routed at L3.

The process 4900 begins by determining (at 4905)
whether the packet needs address resolution (e.g., resolving
a destination IP address to a destination MAC address). In
some embodiments, the process determines whether the
packet needs L3 processing based on flow entry. The flow
entry, of which the qualifier matches the information stored
in the packet’s header or logical context, specifies that the
packet needs address resolution.

When the process 4900 determines (at 4905) that the
packet does not need address resolution, the process ends.
Otherwise, the process 4900 determines (at 4910) whether
the process 4900 needs to request an address into which to
resolve a packet’s address (e.g., destination IP address) from
an L3 daemon. In some embodiments, the process 4900
determines whether the process needs to ask the .3 daemon
based on the flow entry. For instance, the flow entry may
specify that the address into which to resolve the packet’s
address should be obtained by requesting for the resolved
address from the L3 daemon. In some embodiments, the
process determines that the [.3 daemon should provide the
resolved address when the flow entry is a flow template that
has an empty field for the resolved address or some other
value in the field for indicating the resolved address should
be obtained from the L3 daemon.

When the process determines (at 4910) that the process
does not need to request for an address from the [.3 daemon,
the process obtains (at 4920) the resolved address from the
flow entry. For instance, the flow entry would provide the
translated address. The process then proceeds to 4925,
which will be described further below. When the process
determines (at 4910) that the process needs to request for an
address from the L3 daemon, the process 4900 at 4915
requests for and obtains the resolved address from the L3
daemon. In some embodiments, the process 4900 requests
for the resolved address by sending a flow template to the [.3
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daemon. The L3 daemon would fill the flow template with
the resolved address and place that filled-in flow template in
the forwarding table (not shown) that the process uses.

Next, the process 4900 modifies the packet with the
resolved address. In some embodiments, the process modi-
fies an address field in the header of the packet. Alternatively
or conjunctively, the process modifies the logical context to
replace the packet’s address with the resolved address. The
process then ends.

FIG. 50 illustrates network architecture 5000 of some
embodiments. Specifically, this figure illustrates a map
server that allows several hosts (or VMs) that each run an L3
daemon to avoid broadcasting ARP requests. This figure
illustrates a set of hosts (or VMs) including 5005, 5010, and
5015.

The hosts 5010 and 5015 are similar to the host 4805
described above by reference to FIG. 48 in that each of the
hosts 5010 and 5010 runs an [.3 daemon, a managed
switching element, and one or more VMs.

The host 5005 runs a map server. The map server 5005 of
some embodiments maintains a global mapping table 5020
that includes all the entries of all mapping tables maintained
by L3 daemons running in every host in the network that
runs a managed edge switching element. In some embodi-
ments, an .3 daemon in the network sends the entries of
mapping between locally available IP addresses and MAC
addresses mappings. Whenever there is a change to the
machines coupled to a managed switching element of a host
(e.g., when a VM fails or is coupled to or de-coupled from
the managed switching element), the 1.3 daemon of the host
updates the respective local mapping table accordingly and
also sends the updates (e.g., by sending a special “publish”
packet containing the updates) to the map server 5005 so that
the map server 5005 keeps the global mapping table 5005
updated with the change.

In some embodiments, the [.3 daemon running in each
host that runs a managed edge switching element does not
broadcast an ARP packet when the local mapping does not
have an entry for a destination IP address to resolve. Instead,
the L.3 daemon consults the map server 5005 to resolve the
destination IP address into the destination MAC address.
The map server 5005 resolves the destination IP address into
a destination MAC address by looking up the global map-
ping table 5020. In the case that the map server 5005 cannot
resolve the IP address (e.g., when the global mapping table
5020 does not have an entry for the IP address or the map
server 5005 fails), the L.3 daemon will resort to broadcasting
an ARP packet to other hosts that run managed edge
switching elements. In some embodiments, the map server
5005 is implemented in the same host or VM in which a
second-level managed switching element (e.g., a pool node)
is implemented.

FIG. 51 illustrates a process 5100 that some embodiments
perform to maintain a mapping table that includes mappings
of IP and MAC addresses. In some embodiments, the
process 5100 is performed by an 1.3 daemon that requests for
resolved addresses from a mapping server. The mapping
server in these embodiments maintains a global mapping
table that includes mappings of IP and MAC addresses for
a set of managed switching elements. The process 5100, in
some embodiments, starts when the process receives a
particular address to resolve from a managed switching
element.

The process begins by determining (at 5105) whether the
process has a resolved address for the particular address
received from the managed switching element. In some
embodiments, the process looks up a local mapping table
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that includes mappings of IP and MAC addresses to deter-
mine whether the process has a resolved address for the
particular address.

When the process 5100 determines that the process has a
resolved address, the process proceeds to 5120, which will
be described further below. Otherwise, the process 5100
requests for and obtains a resolved address from the map
server. The process 5100 then modifies (at 5115) the local
mapping table with the resolved address obtained from the
mapping server. In some embodiments, the process 5100
inserts a new mapping of the resolved address and the
particular address into the local mapping table.

The process 5100 then sends the resolved address to the
managed switching element. In some embodiments, the
process 5100 modifies the packet that has the particular
address. In other embodiments, the process 5100 modifies
the flow template that the managed switching element had
sent as a request for the resolved address. The process then
ends.

FIG. 52 illustrates a process 5200 that some embodiments
perform to maintain a mapping table that includes mappings
of IP and MAC addresses. In some embodiments, the
process 5200 is performed by an [.3 daemon that maintains
a local mapping table and sends updates to a mapping server.
The mapping server in these embodiments maintains a
global mapping table that includes mappings of IP and MAC
addresses for a set of managed switching elements. The
process 5200, in some embodiments, starts when the L3
daemon starts running

The process 5200 begins by monitoring (at 5205) a set of
managed switching elements. In particular, the process 5200
monitors for coupling and decoupling of machines to and
from a managed switching element or any address change
for the machines coupled to a managed switching element.
In some embodiments, the set of managed switching ele-
ments includes those managed switching elements that are
running on the same host or virtual machine on which the L3
daemon is running

Next, the process 5200 determines (at 5210) whether
there has been such a change to a managed switching
element that the process monitors. When the process deter-
mines (at 5210) that there has not been a change, the process
5200 loops back to 5205 to keep monitoring the set of
managed switching elements. Otherwise, the process modi-
fies (at 5215) the corresponding entries in the local mapping
table. For instance, when a VM migrates and gets coupled to
one of the managed switching element in the set, the process
inserts a mapping of the IP address and the MAC address of
the migrated VM into the local mapping table.

The process 5200 then sends the updated mapping to the
map server so that the map server can update the global
mapping table with the new and/or modified mapping of the
1P address and MAC address. The process then ends.
VIII. Flow Generation and Flow Processing

As described above, the managed switching elements of
some embodiments implement logical switches and logical
routers based on flow tables supplied to the managed switch-
ing elements by the controller cluster (one or more controller
instances) of some embodiments. In some embodiments, the
controller cluster generates these flow entries by performing
table mapping operations based on the inputs or network
events the controller cluster detects. Details of these con-
troller clusters and their operations are described in U.S.
patent application Ser. No. 13/177,533, and in the above-
incorporated U.S. patent application.

As mentioned in U.S. patent application Ser. No. 13/589,
077, the network control system in some embodiments is a
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distributed control system that includes several controller
instances that allow the system to accept logical datapath
sets from users and to configure the switching elements to
implement these logical datapath sets. In some embodi-
ments, one type of controller instance is a device (e.g., a
general-purpose computer) that executes one or more mod-
ules that transform the user input from a logical control
plane to a logical forwarding plane, and then transform the
logical forwarding plane data to physical control plane data.
These modules in some embodiments include a control
module and a virtualization module. A control module
allows a user to specify and populate logical datapath set,
while a virtualization module implements the specified
logical datapath set by mapping the logical datapath set onto
the physical switching infrastructure. In some embodiments,
the control and virtualization applications are two separate
applications, while in other embodiments they are part of the
same application.

From the logical forwarding plane data for a particular
logical datapath set, the virtualization module of some
embodiments generates universal physical control plane
(UPCP) data that is generic for any managed switching
element that implements the logical datapath set. In some
embodiments, this virtualization module is part of a con-
troller instance that is a master controller for the particular
logical datapath set. This controller is referred to as the
logical controller.

In some embodiments, the UPCP data is then converted to
customized physical control plane (CPCP) data for each
particular managed switching element by a controller
instance that is a master physical controller instance for the
particular managed switching element, or by a chassis
controller for the particular managed switching element, as
further described in U.S. patent application Ser. No. 13/589,
077. When the chassis controller generates the CPCP data,
the chassis controller obtains the UPCP data from the
virtualization module of the logical controller through the
physical controller.

Irrespective of whether the physical controller or chassis
controller generate the CPCP data, the CPCP data for a
particular managed switching element needs to be propa-
gated to the managed switching element. In some embodi-
ments, the CPCP data is propagated through a network
information base (NIB) data structure, which in some
embodiments is an object-oriented data structure. Several
examples of using the NIB data structure are described in
U.S. patent application Ser. Nos. 13/177,529 and 13/177,
533, which are incorporated herein by reference. As
described in these applications, the NIB data structure is also
used in some embodiments to may serve as a communica-
tion medium between different controller instances, and to
store data regarding the logical datapath sets (e.g., logical
switching elements) and/or the managed switching elements
that implement these logical datapath sets.

However, other embodiments do not use the NIB data
structure to propagate CPCP data from the physical control-
lers or chassis controllers to the managed switching ele-
ments, to communicate between controller instances, and to
store data regarding the logical datapath sets and/or man-
aged switching elements. For instance, in some embodi-
ments, the physical controllers and/or chassis controllers
communicate with the managed switching elements through
OpenFlow entries and updates over the configuration pro-
tocol. Also, in some embodiments, the controller instances
use one or more direct communication channels (e.g., RPC
calls) to exchange data. In addition, in some embodiments,
the controller instances (e.g., the control and virtualization
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modules of these instance) express the logical and/or physi-
cal data in terms of records that are written into the relational
database data structure. In some embodiments, this rela-
tional database data structure are part of the input and output
tables of a table mapping engine (called n Log) that is used
to implement one or more modules of the controller
instances.

FIG. 53 conceptually illustrates three controller instances
of a controller cluster of some embodiments. These three
controller instances include a logical controller 5300 for
generating UPCP data from logical control plane (LCP) data
received as API calls, and physical controllers 5390 and
5330 for customizing the UPCP data specific to managed
switching elements 5320 and 5325, respectively. Specifi-
cally, the logical controller 5300 of some embodiments
generates universal flows by performing table mapping
operations on tables using a table mapping processor (not
shown) such as an n Log. An n Log engine is described in
U.S. patent application Ser. No. 13/177,533. This figure also
illustrates a user 5325 and managed switching elements
5320 and 5325.

As shown, the logical controller 5300 includes a control
application 5305 and a virtualization application 5310. In
some embodiments, the control application 5305 is used to
receive the logical control plane data, and to convert this
data to logical forwarding plane data that is then supplied to
the virtualization application 5310. The virtualization appli-
cation 5310 generates universal physical control plane data
from logical forwarding plane data.

In some embodiments, some of the logical control plane
data are converted from the inputs. In some embodiments,
the logical controller 5300 supports a set of API calls. The
logical controller has an input translation application (not
shown) that translates the set of API calls into LCP data.
Using the API calls, the user can configure logical switches
and logical routers as if the user is configuring physical
switching elements and routers.

The physical controllers 5390 and 5330 are the masters of
the managed switching elements 5320 and 5325, respec-
tively. The physical controller 5390 and 5330 of some
embodiments receive the UPCP data from the logical con-
troller 5300 and converts the UPCP data to CPCP data for
the managed switching elements 5320 and 5325, respec-
tively. The physical controller 5390 then sends the CPCP
data for the managed switching element 5320 to the man-
aged switching element 5320. The physical controller 5330
sends the CPCP data for the managed switching element
5325 to the managed switching element 5325. The CPCP
data for the managed switching elements 5320 and 5325 are
in the form of flow entries. The managed switching elements
5320 and 5325 then perform forwarding and routing the
packets based on the flow entries. As described in in U.S.
patent application Ser. No. 13/177,533, this conversion of
LCP data to the LFP data and then to the CPCP data is
performed by using an nlog engine.

Even though FIG. 53 illustrates two physical controllers
generating CPCP data from UPCP data for two different
managed switching elements, one of ordinary skill will
realize that in other embodiment the physical controllers
serve to simply relay the UPCP data to each switching
element’s chassis controller, which in turn generates that
switching element’s CPCP data and pushes this data to it
switching element.

FIG. 54 illustrates an example architecture 5400 and a
user interface 5405. Specifically, this figure illustrates that
the user sends to a controller application in order to config-
ure logical switches and routers in a desired way. This figure
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illustrates a user interface (UI) 5405 in four stages 5406-
5409 in the left half of the figure. This figure also illustrates
the architecture 5400, which includes a logical router 5425
and two logical switches 5420 and 5430 in the right half of
the figure.

The UI 5405 is an example interface through which the
user can enter inputs and receive responses from a controller
instance in order to manage the logical switches and routers.
In some embodiments, the Ul 5405 is provided as a web
application and thus can be opened up with a web browser.
Alternatively or conjunctively, the control application of
some embodiments may allow the user to enter and receive
inputs through a command line interface.

The left half of the figure illustrates that the user enters
inputs to set up logical ports in logical switches and logical
routers that are to be implemented by a set of managed
switching elements of the network that the controller
instance manages. In particular, the user adds a logical port
to a logical router, LR, by supplying (at stage 5406) the
port’s identifier, “RP1,” an IP address of “1.1.1.253” to
associate with the port, and a net mask “255.255.255.0.” The
user also adds a logical port to a logical switch, LS1, by
supplying (at 5407) a port identifier, “SP1,” and specifying
that the port is to be connected to the logical port RP1 of the
logical router. The user also adds another logical port to the
logical router LR by supplying (at stage 5408) the port’s
identifier, “RP2,” an IP address of “1.1.2.253” to associate
with the port, and a net mask “255.255.255.0.” The user also
adds another logical port to the logical switch L.S2 by
supplying (at 5409) a port identifier, “SP2,” and specifying
that the port is to be connected to the logical port RP2 of the
logical router. The right half of the figure illustrates the ports
added to the logical router and logical switches.

FIGS. 55-62 conceptually illustrates an example opera-
tion of the control application 5305. These figures illustrate
a set of tables that the control application 5305 uses and
modifies in order to generate flow entries to be supplied to
managed switching elements. Specifically, the managed
switching elements (not shown) implement the logical ports
added to the logical switches 5420 and 5430 and the logical
router 5400 based on the inputs described above by refer-
ence to FIG. 54. The figure illustrates the control application
5305, the virtualization application 5310, and the physical
controller 5330.

The control application 5305 as shown includes input
translation 5505, input tables 5510, a rules engine 5515,
output tables 5520, a exporter 5525.

The input translation 5505, in some embodiments, inter-
acts with a management tool with which a user can view
and/or modify a logical network state. Different embodi-
ments provide different management tools to the user. For
instance, the input translation 5505, in some embodiments,
provides a graphical tool such as the Ul 5405 described
above by reference to FIG. 54. Instead of, or in conjunction
with, a graphical tool, other embodiments may provide the
user with a command-line tool or any other type of man-
agement tool. The input translation 5505 receives inputs
from the user through the management tool and processes
the received inputs to create, populate and/or modify one or
more input tables 5510.

The input tables 5510 are similar to the input tables
described in U.S. patent application Ser. No. 13/288,908,
now issued as U.S. Pat. No. 9,043,452, which is incorpo-
rated herein by reference. An input table in some cases
represents the state of the logical switches and the logical
routers that the user is managing. For instance, an input table
5530 is a table that stores IP addresses in classless inter-



US 9,461,960 B2

89

domain routing (CIDR) format, associated with logical ports
of logical switches. The control application modifies input
tables with inputs that the control application receives
through the management tool or with any network events
that the control application detects. After the control appli-
cation 5305 modifies input tables, the control application
5305 uses the rules engine 5515 to process the modified
input tables.

The rules engine 5515 of different embodiments performs
different combinations of database operations on different
sets of input tables to populate and/or modify different sets
of output tables 5520. For instance, the rules engine 5515
modifies a table 5535 to associate a MAC address to a
logical port of a logical router when the input table 5530 is
changed to indicate that the logical port of the logical router
is created. The output table 5565 includes flow entries that
specify the actions for the managed switching elements that
implement the logical switches and logical routers to per-
form on the network data that is being routed/forwarded. In
addition to the tables 5530-5560, the rules engine 5515 may
use other input tables, constants tables, and functions tables
to facilitate the table mapping operation of the rules engine
5515.

The output tables may also be used as input tables to the
rules engine 5515. That is, a change in the output tables may
trigger another table mapping operation to be performed by
the rules engine 5515. Therefore, the entries in the tables
5530-5560 may be resulted from performing table mapping
operations and may also provide inputs to the rules engine
5515 for another set of table mapping operations. As such,
the input tables and the output tables are depicted in a single
dotted box in this figure to indicate the tables are input
and/or output tables.

The table 5535 is for storing pairings of logical ports of
logical routers and the associated MAC addresses. The table
5540 is a logical routing table for a logical router to use
when routing the packets. In some embodiments, the table
5540 will be sent to the managed switching element that
implements the logical router. The table 5550 is for storing
next-hop identifiers and IP addresses for logical ports of
logical routers. The table 5555 is for storing connections
between logical ports of logical switches and logical ports of
logical routers. The exporter 5525 publishes or sends the
modified output tables in the output tables 5520 to a virtu-
alization application 5310.

FIG. 55 illustrates the tables 5530-5565 before the stage
5406 described above by reference to FIG. 54. The entries
in the tables are depicted as dots to indicate there are some
existing entries in these tables.

FIG. 56 illustrates the tables 5530-5565 after the stage
5406. That is, this figure illustrates the tables 5530-5565
after the user supplies a logical port’s identifier, “RP1,” an
1P address of “1.1.1.253” to associate with the port, and a net
mask “255.255.255.0.” to add the logical port to the logical
router 5425, identified as “LR.” Here, the table 5530 is
updated with a new entry by the input translation 5505. The
new entry (or row) 5601 indicates a logical port identified as
“RP1” is added and the IP addresses associated with this port
is specified by the IP address 1.1.1.253, a prefix length 24,
and the net mask 255.255.255.0.

The rules engine 5515 detects this update to the table 5530
and performs a set of table mapping operations to update the
tables 5535 and 5540. FIG. 57 illustrates the result of this set
of table mapping operations. Specifically, this figure illus-
trates that the table 5535 has a new row 5701, which
indicates that the logical port RP1 is now associated with a
MAC address 01:01:01:01:01:01. This MAC address is
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generated by the rules engine 5515 while performing the
table mapping operations using other tables or functions (not
shown).

FIG. 57 also illustrates that the table 5540 has a new row
5702, which is an entry in the routing table for the logical
router 5425. The logical router 5425 (the managed switching
element that implements the logical router 5425) will look
up this table 5540 to make a routing decision. The row 5702
specifies that the next hop for the logical port RP1 has a
unique identifier “NH1.” The row 5702 also includes a
priority assigned to this row in the routing table. This
priority is used for determining which row should be used to
make a routing decision when there are multiple matching
rows in the routing table. In some embodiments, the value
for the priority for a row in an entry is prefix length plus a
basic priority value “BP.”

The rules engine 5515 detects the update to the table 5540
and performs a set of table mapping operations to update the
table 5550. FIG. 58 illustrates the result of this set of table
mapping operations. Specifically, this figure illustrates that
the table 5550 has a new row 5801, which indicates that the
IP address of the next hop for the logical port RP1 of the
logical router 5425 is a given packet’s destination IP
address. (“0” in this row means that the next hop’s IP is the
destination of the given packet that would be routed through
RP1 of the logical router.)

FIG. 59 illustrates the tables 5530-5560 after the stage
5407 described above by reference to FIG. 54. That is, this
figure illustrates the tables 5530-5565 after the user supplies
a logical port’s identifier, “SP1,” to add the logical port to
the logical switch 5420 (LS1) and links this port to the
logical port RP1 of the logical router 5425. Here, the table
5555 is updated with two new rows by the input translation
5505. The new row 5901 indicates that a logical port
identified as “SP1” (of the logical switch 5420) is attached
to the logical port RP1 (of the logical router 5425). Also, the
new row 5902 indicates that the logical port RP1 is attached
to the logical port SP1. This link connects 1.2 processing and
L3 processing portions of the logical processing pipeline
200 described above.

The rules engine 5515 detects the updates to the table
5555 and performs a set of table mapping operations to
update the table 5535. FIG. 60 illustrates the result of this set
of table mapping operations. Specifically, this figure illus-
trates that the table 5535 has a new row 6001, which
indicates that the logical port SP1 is now associated with a
MAC address 01:01:01:01:01:01 because SP1 and RP1 are
now linked.

The rules engine 5515 detects the updates to the table
5555 and performs a set of table mapping operations to
update the table 5560. FIG. 61 illustrates the result of this set
of table mapping operations. Specifically, this figure illus-
trates that the table 5550 has four new rows (flow entries)
6101-6104. The row 6101 is a flow entry indicating that
packets whose destination MAC addresses is 01:01:01:01:
01:01 are to be sent to the logical port SP 1 (of the logical
switch 5420). The row 6102 is a flow entry indicating that
any packet delivered to the logical port SP1 is to be sent to
the logical port RP1. The row 6103 is a flow entry indicating
that any packet delivered to the logical port RP1 is to be sent
to the logical port SP1. The row 6104 is a flow entry
indicating that a packet with an IP address that falls within
the range of IP addresses specified by 1.1.1.253/24 should
request for MAC address by asking an [.3 daemon.

FIG. 62 illustrates new rows 6201-6209 added to some of
the tables after stages 5408 and 5409 described above. For
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simplicity of description, the intermediate illustration of
table updates by the rules engine 5515 is omitted.

The new row 6201 indicates a logical port identified as
“RP2” is added and the IP addresses associated with this port
is specified by the IP address 1.1.2.253, a prefix length 24,
and the net mask 255.255.255.0. The new row 6202, which
indicates that the logical port RP2 is now associated with a
MAC address 01:01:01:01:01:02. The new row 6203, which
indicates that the logical port SP2 is associated with a MAC
address 01:01:01:01:01:02. The new row 6204, which is an
entry in the routing table for the logical router 5430. The row
6204 specifies that the next hop for the logical port RP2 has
a unique identifier “NH2.” The row 6204 also includes a
priority assigned to this row in the routing table.

The new row 6205 indicates that the IP address of the next
hop for the logical port RP2 of the logical router 5425 is a
given packet’s destination [P address. The new row 6206
indicates that a logical port identified as “SP2” (of the
logical switch 5430) is attached to the logical port RP2 (of
the logical router 5425). Also, the new row 6207 indicates
that the logical port RP2 is attached to the logical port SP2.

The row 6208 is a flow entry indicating that packets
whose destination MAC addresses is 01:01:01:01:01:02 are
to be sent to the logical port SP2 (of the logical switch 5430).
The row 6209 is a flow entry indicating that any packet
delivered to the logical port SP2 is to be sent to the logical
port RP2. The row 6210 is a flow entry indicating that any
packet delivered to the logical port RP2 is to be sent to the
logical port SP2. The row 6211 is a flow entry indicating that
a packet with an IP address that falls within the range of IP
addresses specified by 1.1.2.253/24 should request for MAC
address by asking an L3 daemon.

These flow entries shown in FIG. 62 are LFP data. This
LFP data will be sent to the virtualization application 5310,
which will generate UPCP data from the LFP data. Then, the
UPCP data will be sent to the physical controller 5330 which
will customize the UPCP data for the managed switching
element 5325 (not shown in FIG. 62). Finally, the physical
controller 5330 will send the CPCP data to the managed
switching element 5325.

FIG. 63 illustrates the architecture 5400 after the control
application 5305 generates logical data by performing the
table mapping operations as described above by reference to
FIGS. 55-62. As shown in FIG. 63, the ports RP1 and RP2
are associated with ranges of IP addresses specified by
1.1.1.253/24 and 1.1.2.253/24, respectively. Also, the ports
SP1 and SP2 are associated with MAC addresses 01:01:01:
01:01:01 and 01:01:01:01:01:02, respectively. This figure
also illustrates VM 1 that is coupled to the logical switch
5420 and VM 2 that is coupled to the logical switch 5430.

An example operation of the logical switches 5420 and
5430, the logical router 5425, and VMs 1 and 2 will now be
described. This example assumes that a set of managed
switching elements that implement the logical router 5425
and the logical switches 5420 and 5430 have all the flow
entries 6101-6104 and 6208-6211. This example also
assumes that the logical data produced by the control
application 5305 are converted to physical control plane data
by the virtualization application 5310 and that the physical
control plane data is received by the managed switching
elements and converted into physical forwarding data.

When VM 1 intends to send a packet to VM 4, VM 1 first
broadcasts an ARP request to resolve the logical router
5425’s MAC address. This ARP packet has a source IP
address of VM 1, which is 1.1.1.10 in this example, and a
destination IP address of VM 4, which is 1.1.2.10 in this
example. This broadcast packet has the broadcast MAC
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address “ff:ff:ff:Af: {11 as the destination MAC address and
the packet’s target protocol address is 1.1.1.253. This broad-
cast packet (the ARP request) is replicated to all ports of the
logical switch 5320 including the logical port SP1. Then,
based on flow entry 6102, this packet is sent to RP1 of the
logical router 5325. The packet is then sent to an [.3 daemon
(not shown) according to the flow entry 6104 because the
destination IP address 1.1.2.10 falls in the range of IP
addresses specified by 1.1.2.253/24 (i.e., because the target
protocol address is 1.1.1.253). The [.3 daemon resolves the
destination IP address to a MAC address 01:01:01:01:01:01,
which is the MAC address of RP1. The L3 daemon sends the
ARP response with this MAC address back to VM 1.

VM 1 then sends a packet to VM 4. This packet has VM
1’s MAC address as the source MAC address, RP1’s MAC
address (01:01:01:01:01:01) as a destination MAC address,
VM 1’s IP address (1.1.1.10) as the source IP address, and
VM 4’s IP address (1.1.2.10) as the destination IP address.

The logical switch 5420 then forwards this packet to SP1
according to the flow entry 6101 which indicates that a
packet with the destination MAC address of 01:01:01:01:
01:01 is to be sent to SP1. When the packet reaches SP1, the
packet is then send to RP1 according to the flow entry 6102,
which indicates that any packet delivered to SP1 to be sent
to RP1.

This packet is then sent to the ingress ACL stage of the
logical router 5425, which in this example allows the packet
to go through RP1. Then the logical router 5425 routes the
packet to the next hop, NH2, according to the entry 6204.
This routing decision is then loaded to a register (of the
managed switching element that implements the logical
router 5425). This packet is then fed into the next hop lookup
process, which uses the next hop’s ID, NH2, to determine
the next-hop IP address and the port the packet should be
sent to. In this example, the next hop is determined based on
the row 6205 which indicates that NH2’s address is the
destination IP address of the packet and the port the packet
should be sent to is RP2.

The packet then is fed into a MAC resolution process to
resolve the destination IP address (1.1.2.10) to MAC address
of VM 4. The L3 daemon resolves the MAC address and
puts back a new flow entry (e.g., by filling in a flow template
with the resolved MAC address) into the managed switching
element that implements the logical router 5425. According
to this new flow, the packet now has VM 4’s MAC address
as the destination MAC address and the MAC address of
RP2 (01:01:01:01:01:02) of the logical router 5425.

The packet then goes through the egress ACL stage of the
logical router 5425, which in this example allows the packet
to exit through RP2. The packet is then sent to SP2 accord-
ing to the flow entry 6210, which indicates that any packet
delivered to RP2 is to be sent to SP2. Then the [.2 processing
for the logical switch 5330 will send the packet to VM 4.
IX. Modification to Managed Edge Switching Element
Implementation

While all the LDPS processing is pushed to the managed
edge switching elements, only the interfaces to actual
attached physical port integration address interoperability
issues in some embodiments. These interfaces, in some
embodiments, implement the standard [.2/1.3 interface for
the host IP/Ethernet stack. The interfaces between the logi-
cal switches and logical routers remain internal to the
virtualization application, and hence do not need to imple-
ment exactly the same protocols as today’s routers to
exchange information.

The virtualization application, in some embodiments, has
the responsibility to respond to the ARP requests sent to the
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first-hop router’s IP address. Since the logical router’s
MAC/IP address bindings are static, this introduces no
scaling issues. The last-hop logical router, in some embodi-
ments, does not have a similar, strict requirement: as long as
the MAC and IP address(es) of the attached port are made
known to the virtualization application, it can publish them
to the internal lookup service not exposed for the endpoints
but only used by the logical pipeline execution. There is no
absolute need to send ARP requests to the attached port.

Some embodiments implement the required .3 function-
ality as an external daemon running next to the Open
vSwitch. In some embodiments, the daemon is responsible
for the following operations:

Responding to ARP requests. In some embodiments,
Open vSwitch feeds ARP requests to the daemon and
the daemon creates a response. Alternatively, some
embodiments use flow templating to create additional
flow entries in the managed edge switching elements.
Flow templating is the use of a set of rules to generate
a series of flow entries dynamically based on packets
received. In some such embodiments, the responses are
handled by the Open vSwitch itself.

Establishing any stateful (NAT, ACL, load-balancing)
per-flow state. Again, if the flow templating is flexible
enough, more can be moved for the Open vSwitch to
handle.

Initiating the distributed lookups. Distributed lookups
(e.g., ARP, learning) are initiated to the mapping ser-
vice as necessary when feeding traffic through its
sequence of logical pipelines. This will involve queu-
ing of IP packets in some embodiments.

For generating ARP requests when integrating with exter-
nal physical networks, some embodiments assume that the
packet can be dropped to the local IP stack by using the
LOCAL output port of OpenFlow.

Mapping service itself is implemented, in some embodi-
ments, by relying on the datapath functionality of the Open
vSwitch: daemons at the managed edge switching elements
publish the MAC and IP address bindings by sending a
special ‘publish’ packet to the mapping service nodes, which
will then create flow entries using the flow templating. The
‘query’ packets from the managed edge switching elements
will be then responded to by these FIB entries, which will
send the packet to the special IN PORT after modifying the
query packet enough to become a response packet.

X. Logical Switching Environment

Several embodiments described above and below provide
network control systems that completely separate the logical
forwarding space (i.e., the logical control and forwarding
planes) from the physical forwarding space (i.e., the physical
control and forwarding planes). These control systems
achieve such a separation by using a mapping engine to map
the logical forwarding space data to the physical forwarding
space data. By completely decoupling the logical space from
the physical space, the control systems of these embodi-
ments allow the logical view of the logical forwarding
elements to remain unchanged while changes are made to
the physical forwarding space (e.g., virtual machines are
migrated, physical switches or routers are added, etc.).

More specifically, the control system of some embodi-
ments manages networks over which machines (e.g. virtual
machines) belonging to several different users (i.e., several
different users in a private or public hosted environment with
multiple hosted computers and managed forwarding ele-
ments that are shared by multiple different related or unre-
lated users) may exchange data packets for separate LDP
sets. That is, machines belonging to a particular user may
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exchange data with other machines belonging to the same
user over a LDPS for that user, while machines belonging to
a different user exchange data with each other over a
different LDPS implemented on the same physical managed
network. In some embodiments, a LDPS (also referred to as
a logical forwarding element (e.g., logical switch, logical
router), or logical network in some cases) is a logical
construct that provides switching fabric to interconnect
several logical ports, to which a particular user’s machines
(physical or virtual) may attach.

In some embodiments, the creation and use of such LDP
sets and logical ports provides a logical service model that
to an untrained eye may seem similar to the use of a virtual
local area network (VLAN). However, various significant
distinctions from the VLLAN service model for segmenting a
network exist. In the logical service model described herein,
the physical network can change without having any effect
on the user’s logical view of the network (e.g., the addition
of'a managed switching element, or the movement of a VM
from one location to another does not affect the user’s view
of the logical forwarding element). One of ordinary skill in
the art will recognize that all of the distinctions described
below may not apply to a particular managed network. Some
managed networks may include all of the features described
in this section, while other managed networks will include
different subsets of these features.

In order for the managed forwarding elements within the
managed network of some embodiments to identify the
LDPS to which a packet belongs, the network controller
clusters automatedly generate flow entries for the physical
managed forwarding elements according to user input defin-
ing the LDP sets. When packets from a machine on a
particular LDPS are sent onto the managed network, the
managed forwarding elements use these flow entries to
identify the logical context of the packet (i.e., the LDPS to
which the packet belongs as well as the logical port towards
which the packet is headed) and forward the packet accord-
ing to the logical context.

In some embodiments, a packet leaves its source machine
(and the network interface of its source machine) without
any sort of logical context ID. Instead, the packet only
contains the addresses of the source and destination machine
(e.g., MAC addresses, [P addresses, etc.). All of the logical
context information is both added and removed at the
managed forwarding elements of the network. When a first
managed forwarding element receives a packet directly from
a source machine, the forwarding element uses information
in the packet, as well as the physical port at which it received
the packet, to identify the logical context of the packet and
append this information to the packet. Similarly, the last
managed forwarding element before the destination machine
removes the logical context before forwarding the packet to
its destination. In addition, the logical context appended to
the packet may be modified by intermediate managed for-
warding elements along the way in some embodiments. As
such, the end machines (and the network interfaces of the
end machines) need not be aware of the logical network over
which the packet is sent. As a result, the end machines and
their network interfaces do not need to be configured to
adapt to the logical network. Instead, the network controllers
configure only the managed forwarding elements. In addi-
tion, because the majority of the forwarding processing is
performed at the edge forwarding elements, the overall
forwarding resources for the network will scale automati-
cally as more machines are added (because each physical
edge forwarding element can only have so many machines
attached).
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In the logical context appended (e.g., prepended) to the
packet, some embodiments only include the logical egress
port. That is, the logical context that encapsulates the packet
does not include an explicit user ID. Instead, the logical
context captures a logical forwarding decision made at the
first hop (i.e., a decision as to the destination logical port).
From this, the user ID (i.e., the LDPS to which the packet
belongs) can be determined implicitly at later forwarding
elements by examining the logical egress port (as that
logical egress port is part of a particular LDPS). This results
in a flat context identifier, meaning that the managed for-
warding element does not have to slice the context ID to
determine multiple pieces of information within the ID.

In some embodiments, the egress port is a 32-bit ID.
However, the use of software forwarding elements for the
managed forwarding elements that process the logical con-
texts in some embodiments enables the system to be modi-
fied at any time to change the size of the logical context (e.g.,
to 64 bits or more), whereas hardware forwarding elements
tend to be more constrained to using a particular number of
bits for a context identifier. In addition, using a logical
context identifier such as described herein results in an
explicit separation between logical data (i.e., the egress
context ID) and source/destination address data (i.e., MAC
addresses). While the source and destination addresses are
mapped to the logical ingress and egress ports, the infor-
mation is stored separately within the packet. Thus, at
managed switching elements within a network, packets can
be forwarded based entirely on the logical data (i.e., the
logical egress information) that encapsulates the packet,
without any additional lookup over physical address infor-
mation.

In some embodiments, the packet processing within a
managed forwarding element involves repeatedly sending
packets to a dispatch port, effectively resubmitting the
packet back into the switching element. In some embodi-
ments, using software switching elements provides the abil-
ity to perform such resubmissions of packets. Whereas
hardware forwarding elements generally involve a fixed
pipeline (due, in part, to the use of an ASIC to perform the
processing), software forwarding elements of some embodi-
ments can extend a packet processing pipeline as long as
necessary, as there is not much of a delay from performing
the resubmissions.

In addition, some embodiments enable optimization of the
multiple lookups for subsequent packets within a single set
of related packets (e.g., a single TCP/UDP flow). When the
first packet arrives, the managed forwarding element per-
forms all of the lookups and resubmits in order to fully
process the packet. The forwarding element then caches the
end result of the decision (e.g., the addition of an egress
context to the packet, and the next-hop forwarding decision
out a particular port of the forwarding element over a
particular tunnel) along with a unique identifier for the
packet that will be shared with all other related packets (i.e.,
a unique identifier for the TCP/UDP flow). Some embodi-
ments push this cached result into the kernel of the forward-
ing element for additional optimization. For additional pack-
ets that share the unique identifier (i.e., additional packets
within the same flow), the forwarding element can use the
single cached lookup that specifies all of the actions to
perform on the packet. Once the flow of packets is complete
(e.g., after a particular amount of time with no packets
matching the identifier), in some embodiments the forward-
ing element flushes the cache. This use of multiple lookups,
in some embodiments, involves mapping packets from a
physical space (e.g., MAC addresses at physical ports) into
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a logical space (e.g., a logical forwarding decision to a
logical port of a logical switch) and then back into a physical
space (e.g., mapping the logical egress context to a physical
outport of the switching element).

Such logical networks, that use encapsulation to provide
an explicit separation of physical and logical addresses,
provide significant advantages over other approaches to
network virtualization, such as VLANs. For example, tag-
ging techniques (e.g., VLAN) use a tag placed on the packet
to segment forwarding tables to only apply rules associated
with the tag to a packet. This only segments an existing
address space, rather than introducing a new space. As a
result, because the addresses are used for entities in both the
virtual and physical realms, they have to be exposed to the
physical forwarding tables. As such, the property of aggre-
gation that comes from hierarchical address mapping cannot
be exploited. In addition, because no new address space is
introduced with tagging, all of the virtual contexts must use
identical addressing models and the virtual address space is
limited to being the same as the physical address space. A
further shortcoming of tagging techniques is the inability to
take advantage of mobility through address remapping.
XI. Electronic System

FIG. 64 conceptually illustrates an electronic system 6400
with which some embodiments of the invention are imple-
mented. The electronic system 6400 can be used to execute
any of the control, virtualization, or operating system appli-
cations described above. The electronic system 6400 may be
a computer (e.g., a desktop computer, personal computer,
tablet computer, server computer, mainframe, a blade com-
puter etc.), phone, PDA, or any other sort of electronic
device. Such an electronic system includes various types of
computer readable media and interfaces for various other
types of computer readable media. Electronic system 6400
includes a bus 6405, processing unit(s) 6410, a system
memory 6425, a read-only memory 6430, a permanent
storage device 6435, input devices 6440, and output devices
6445.

The bus 6405 collectively represents all system, periph-
eral, and chipset buses that communicatively connect the
numerous internal devices of the electronic system 6400.
For instance, the bus 6405 communicatively connects the
processing unit(s) 6410 with the read-only memory 6430,
the system memory 6425, and the permanent storage device
6435.

From these various memory units, the processing unit(s)
6410 retrieve instructions to execute and data to process in
order to execute the processes of the invention. The pro-
cessing unit(s) may be a single processor or a multi-core
processor in different embodiments.

The read-only-memory (ROM) 6430 stores static data and
instructions that are needed by the processing unit(s) 6410
and other modules of the electronic system. The permanent
storage device 6435, on the other hand, is a read-and-write
memory device. This device is a non-volatile memory unit
that stores instructions and data even when the electronic
system 6400 is off. Some embodiments of the invention use
a mass-storage device (such as a magnetic or optical disk
and its corresponding disk drive) as the permanent storage
device 6435.

Other embodiments use a removable storage device (such
as a floppy disk, flash drive, etc.) as the permanent storage
device. Like the permanent storage device 6435, the system
memory 6425 is a read-and-write memory device. However,
unlike storage device 6435, the system memory is a volatile
read-and-write memory, such a random access memory. The
system memory stores some of the instructions and data that
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the processor needs at runtime. In some embodiments, the
invention’s processes are stored in the system memory 6425,
the permanent storage device 6435, and/or the read-only
memory 6430. From these various memory units, the pro-
cessing unit(s) 6410 retrieve instructions to execute and data
to process in order to execute the processes of some embodi-
ments.

The bus 6405 also connects to the input and output
devices 6440 and 6445. The input devices enable the user to
communicate information and select commands to the elec-
tronic system. The input devices 6440 include alphanumeric
keyboards and pointing devices (also called “cursor control
devices”). The output devices 6445 display images gener-
ated by the electronic system. The output devices include
printers and display devices, such as cathode ray tubes
(CRT) or liquid crystal displays (LCD). Some embodiments
include devices such as a touchscreen that function as both
input and output devices.

Finally, as shown in FIG. 64, bus 6405 also couples
electronic system 6400 to a network 6465 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN”), or an Intranet, or
a network of networks, such as the Internet. Any or all
components of electronic system 6400 may be used in
conjunction with the invention.

Some embodiments include electronic components, such
as microprocessors, storage and memory that store computer
program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-
readable storage media, machine-readable media, or
machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital
versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a
variety of recordable/rewritable DVDs (e.g., DVD-RAM,
DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards,
mini-SD cards, micro-SD cards, etc.), magnetic and/or solid
state hard drives, read-only and recordable Blu-Ray® discs,
ultra density optical discs, any other optical or magnetic
media, and floppy disks. The computer-readable media may
store a computer program that is executable by at least one
processing unit and includes sets of instructions for per-
forming various operations. Examples of computer pro-
grams or computer code include machine code, such as is
produced by a compiler, and files including higher-level
code that are executed by a computer, an electronic com-
ponent, or a microprocessor using an interpreter.

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute software, some
embodiments are performed by one or more integrated
circuits, such as application specific integrated circuits
(ASICs) or field programmable gate arrays (FPGAs). In
some embodiments, such integrated circuits execute instruc-
tions that are stored on the circuit itself.

As used in this specification, the terms “computer”,
“server”, “processor”, and “memory” all refer to electronic
or other technological devices. These terms exclude people
or groups of people. For the purposes of the specification,
the terms display or displaying means displaying on an
electronic device. As used in this specification, the terms
“computer readable medium,” “computer readable media,”
and “machine readable medium” are entirely restricted to
tangible, physical objects that store information in a form

10

15

20

25

30

35

40

45

50

55

60

65

98

that is readable by a computer. These terms exclude any
wireless signals, wired download signals, and any other
ephemeral signals.

While the invention has been described with reference to
numerous specific details, one of ordinary skill in the art will
recognize that the invention can be embodied in other
specific forms without departing from the spirit of the
invention. In addition, a number of the figures (including
FIGS. 14, 16, 32, 35, 49, 51, and 52) conceptually illustrate
processes. The specific operations of these processes may
not be performed in the exact order shown and described.
The specific operations may not be performed in one con-
tinuous series of operations, and different specific operations
may be performed in different embodiments. Furthermore,
the process could be implemented using several sub-pro-
cesses, or as part of a larger macro process. Thus, one of
ordinary skill in the art would understand that the invention
is not to be limited by the foregoing illustrative details, but
rather is to be defined by the appended claims.

What is claimed is:

1. For a managed forwarding element (MFE) that operates
in a host machine to implement a plurality of logical
networks for a plurality of machines operating on the host
machine, a method comprising:

at the MFE, receiving a packet from a particular machine

operating on the host machine;

at the MFE, performing logical .2 switching for a first

logical 1.2 domain to which the particular machine
belongs to logically send the packet to a logical port
that couples to a logical router;

while performing logical [.3 routing for the logical router

at the MFE, determining that a destination network

address of the packet requires address resolution;
using an address resolution module operating on the host

machine to resolve the network address; and
forwarding the packet using the resolved network address.

2. The method of claim 1, wherein using the address
resolution module to resolve the network address avoids
sending an address resolution protocol (ARP) request.

3. The method of claim 1, wherein the address resolution
module maintains and uses a list of address pairs, wherein
each pair in the list includes a first address and a second
address, the first address being an address to resolve, the
second address being an address to which the first address is
to be resolved.

4. The method of claim 3, wherein the first address is a
network layer address and the second address is a data link
layer address.

5. The method of claim 3, wherein the first address is an
Internet Protocol (IP) address and the second address is a
Media Access Control (MAC) address.

6. The method of claim 3, wherein the address resolution
module sends an address resolution protocol (ARP) request
to other host machines to obtain an address to which to
resolve the network address when the list does not include
an address pair that includes the network address.

7. The method of claim 3, wherein (i) the host machine is
a first host machine and the list of address pairs is a local list,
(i) a second host machine comprises a global address
resolution module to maintain and use a global list of
address pairs that are collected from other host machines,
and (iii) the address resolution module asks the global
address resolution module for an address to which to resolve
the network address when the local list of the first host does
not include an address pair that includes the network
address.
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8. The method of claim 7, wherein the global address
resolution module sends an address resolution protocol
(ARP) request to other host machines to obtain an address to
which to resolve the network address when the global list
does not include an address pair that includes the network
address.

9. The method of claim 7, wherein the address resolution
module creates a new address pair and updates the local list
with the new address pair upon receiving a resolved address
from the global address resolution module.

10. The method of claim 3, wherein the address resolution
module creates a new address pair when a new virtual
machine is provisioned in or migrated to the host machine.

11. The method of claim 10, wherein the address resolu-
tion module sends the new address pair to a global address
resolution module used by address resolution modules at a
plurality of host machines.

12. The method of claim 1, wherein using the address
resolution module to resolve the network address comprises:

sending a flow entry that includes the network address to

the address resolution module; and

receiving, from the address resolution module, a modified

flow entry that includes the resolved network address.

13. The method of claim 1, wherein the address resolution
module and the managed forwarding element are separate
software applications running in the host machine.

14. A computer configured as a first host for managing
network traffic to route, the computer comprising:

a set of processing units;

a machine readable medium storing:

an address resolution module for execution by at least
one processing unit in the set of processing units, the
address resolution module configured to resolve net-
work addresses; and

a software forwarding element for execution by at least
one processing unit in the set of processing units, the
software forwarding element configured to (i) pro-
cess packets received from a machine operating on
the first host through a logical processing pipeline
including a L2 pipeline of a logical switch to which
the machine logically couples and a [.3 pipeline of a
logical router to which the logical switch logically
couples, (ii) use the address resolution module to
resolve destination network addresses of packets
while performing logical [.3 routing within the L3
pipeline and (iii) forward the packets using the
resolved network addresses.

15. The computer of claim 14, wherein the address
resolution module is further configured to maintain and use
a list of address pairs, wherein each pair in the list includes
a first address and a second address, the first address being
an address to resolve, the second address being an address
to which the first address is to be resolved.
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16. The computer of claim 15, wherein the first address is
a network layer address and the second address is a data link
layer address.

17. The computer of claim 15, wherein the first address is
an Internet Protocol (IP) address and the second address is
a Media Access Control (MAC) address.

18. The computer of claim 15, wherein the address
resolution module is further configured to send an address
resolution protocol (ARP) request to other host machines to
obtain an address to which to resolve the network address
when the list does not include an address pair that includes
the destination network address of a particular packet.

19. A non-transitory machine readable medium storing a
program for a managed forwarding element (MFE) which
when executed by at least one processing unit of a host
machine implements a plurality of logical networks for a
plurality of machines operating on the host, the program
comprising sets of instructions for:

at the MFE, receiving a packet from a particular machine

operating on the host machine;

at the MFE, performing logical .2 switching for a first

logical 1.2 domain to which the particular machine
belongs to logically send the packet to a logical port
that couples to a logical router;

while performing logical [.3 routing for the logical router

at the MFE, determining that a destination network

address of the packet requires address resolution;
using an address resolution module operating on the host

machine to resolve the network address; and
forwarding the packet using the resolved network address.

20. The machine readable medium of claim 19, wherein
the address resolution module maintains and uses a list of
address pairs, wherein each pair in the list includes a first
address and a second address, the first address being an
address to resolve, the second address being an address to
which the first address is to be resolved.

21. The machine readable medium of claim 20, wherein
(1) the host machine is a first host machine and the list of
address pairs is a local list, (ii) a second host machine
comprises a global address resolution module to maintain
and use a global list of address pairs that are collected from
other host machines, and (iii) the address resolution module
asks the global address resolution module for an address to
which to resolve the network address when the local list of
the first host does not include an address pair that includes
the network address.

22. The machine readable medium of claim 21, wherein
the global address resolution module sends an address
resolution protocol (ARP) request to other host machines to
obtain an address to which to resolve the network address
when the global list does not include an address pair that
includes the network address.

#* #* #* #* #*



